Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 152-163.doi: 10.11707/j.1001-7488.LYKX20230162
• Research papers • Previous Articles Next Articles
Yanglong Li(),Shumeng Wei,Xiangteng Chen,Yuhong Dong,Lingyu Hou,Ruzhen Jiao*
Received:
2023-04-22
Online:
2024-08-25
Published:
2024-09-03
Contact:
Ruzhen Jiao
E-mail:lxliyl@126.com
CLC Number:
Yanglong Li,Shumeng Wei,Xiangteng Chen,Yuhong Dong,Lingyu Hou,Ruzhen Jiao. Growth and Metabolic Responses of Burkholderia contaminans JLS17 to Cd2+ Stress[J]. Scientia Silvae Sinicae, 2024, 60(8): 152-163.
Table 1
Common significant up-regulated and down-regulated metabolites of strain JLS17 under Cd2+ stress treatments"
物质 Compounds | 分类 Class | 表达量差异 Expression difference | CK vs Cd50 log2FC | CK vs Cd300 log2FC |
苯丙氨酰-精氨酰-缬氨酰-酪氨酸 Phenylalanyl-Arginyl-Valyl-Tyrosine | 氨基酸及其衍生物 Amino acids and their derivatives | 上调 Up-regulated | 21.70 | 22.20 |
苏氨酰-异亮氨酰-脯氨酰-酪氨酸 Threonyl-Isoleucyl-Prolyl-Tyrosine | 氨基酸及其衍生物 Amino acids and their derivatives | 上调 Up-regulated | 2.62 | 6.14 |
N-琥珀酰-L-谷氨酸 N-Succinyl-L-glutamate | 氨基酸及其衍生物 Amino acids and their derivatives | 上调 Up-regulated | 0.97 | 3.39 |
脯氨酰-组氨酸 Prolyl-Histidine | 氨基酸及其衍生物 Nucleotides and their derivatives | 下调 Down-regulated | ?0.75 | ?24.18 |
鸟苷酸 Guanosine monophosphate | 核苷酸及其衍生物 Nucleotides and their derivatives | 上调 Up-regulated | 2.52 | 4.75 |
鸟苷-3’-磷酸 Guanosine-3'-phosphate | 核苷酸及其衍生物 Nucleotides and their derivatives | 上调 Up-regulated | 1.95 | 4.07 |
5-羟基甲基脱氧胞苷酸 5-Hydroxymethyldeoxycytidylate | 核苷酸及其衍生物 Nucleotides and their derivatives | 下调 Down-regulated | ?24.60 | ?24.63 |
尿苷三磷酸 Uridine triphosphate | 核苷酸及其衍生物 Nucleotides and their derivatives | 下调 Down-regulated | ?6.67 | ?6.12 |
6-巯基嘌呤核糖核苷三磷酸 6-Mercaptopurine ribonucleoside triphosphate | 核苷酸及其衍生物 Nucleotides and their derivatives | 下调 Down-regulated | ?4.26 | ?5.18 |
2-酰基甘油磷酸胆碱 2-Acylglycerophosphocholine | 脂质 Lipids | 上调 Up-regulated | 4.03 | 6.25 |
胞苷二磷酸-甘油二酯(18:1(9Z)/18:0) CDP-DG(18:1(9Z)/18:0) | 脂质 Lipids | 下调 Down-regulated | ?5.45 | ?25.85 |
胞苷二磷酸-甘油二酯(18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) CDP-DG (18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) | 脂质 Lipids | 下调 Down-regulated | ?1.15 | ?29.82 |
甘油三酯(14:0/18:1(9Z)/22:0) TG(14:0/18:1(9Z)/22:0) | 脂质 Lipids | 下调 Down-regulated | ?1.90 | ?28.23 |
甘油二酯(16:0/18:1(9Z)/0:0) DG(16:0/18:1(9Z)/0:0) | 脂质 Lipids | 下调 Down-regulated | ?2.52 | ?5.98 |
辛酸 Caprylic acid | 脂质 Lipids | 下调 Down-regulated | ?1.39 | ?7.47 |
N-琥珀酰-L,L-2,6-二氨基庚二酸 N-Succinyl-L,L-2,6-diaminopimelate | 有机酸及其衍生物 Organic acids and their derivatives | 上调 Up-regulated | 5.17 | 6.35 |
节球藻毒素 Nodularin | 有机酸及其衍生物 Organic acids and their derivatives | 下调 Down-regulated | ?25.12 | ?8.11 |
萜烯K Terpendole K | 萜类 Terpenoids | 下调 Down-regulated | ?1.21 | ?27.52 |
2-庚酮 2-Heptanone | 酮类 Ketones | 下调 Down-regulated | ?1.31 | ?7.86 |
章鱼碱 L-N2-(2-Carboxyethyl)arginine | 生物碱 Alkaloids | 上调 Up-regulated | 3.52 | 6.81 |
陈传玉, 谭樊杰, 殷 平, 等. 酶法体外高效制备信号分子(pp)pGpp. 华中农业大学学报, 2022, 41 (4): 271- 278. | |
Chen C Y, Tan F J, Yin P, et al. Efficient preparation of signal molecule (pp)pGpp in vitro by enzymatic method. Journal of Huazhong Agricultural University, 2022, 41 (4): 271- 278. | |
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析. 农业环境科学学报, 2017, 36 (9): 1689- 1692.
doi: 10.11654/jaes.2017-1220 |
|
Chen N C, Zheng Y J, He X F, et al. Analysis of the report on the national general survey of soil contamination. Journal of Agro-Environment Science, 2017, 36 (9): 1689- 1692.
doi: 10.11654/jaes.2017-1220 |
|
李亚娇, 马培杰, 龙忠富, 等. 低磷与干旱胁迫下百脉根代谢组学分析. 草地学报, 2022, 30 (2): 329- 338. | |
Li Y J, Ma P J, Long Z F, et al. Metabonomic analysis of Lotus corniculatus under low phosphorus and drought stress. Acta Agrestia Sinica, 2022, 30 (2): 329- 338. | |
刘倩钰, 吴丽雯, 牛建军, 等. 细菌磷酸转移酶系统(PTS)的组成与功能研究进展. 微生物学通报, 2020, 47 (7): 2266- 2277. | |
Liu Q Y, Wu L W, Niu J J, et al. Research progress of the composition and function of bacterial phosphotransferase system. Microbiology China, 2020, 47 (7): 2266- 2277. | |
王慧荣, 徐佳佳, 梅荣武, 等. α-蒎烯降解菌株的筛选及降解特性. 环境科学与技术, 2015, 38 (5): 35- 39. | |
Wang H R, Xu J J, Mei R W, et al. Screening of an alpha-pinene-degrading bacterium and its degradation characteristics. Environmental Science & Technology, 2015, 38 (5): 35- 39. | |
伍杰毅, 岳海涛, 赵鲁玉, 等. 一株耐盐碱乳酪短杆菌G20响应盐碱胁迫的差异代谢物分析. 微生物学报, 2023, 63 (2): 582- 600. | |
Wu J Y, Yue H T, Zhao L Y, et al. Analysis of differential metabolites of Brevibacterium casei G20 in response to saline-alkali stress. Acta Microbiologica Sinica, 2023, 63 (2): 582- 600. | |
修玉冰, 刘崇卿, 刘耀辉, 等. 溶磷菌肥联合构树修复铜污染土壤效应研究. 江西农业大学学报, 2022, 45 (1): 231- 242. | |
Xiu Y B, Liu C Q, Liu Y H, et al. Effects of phosphorus solublilizing microbial fertilizer with Broussonetia papyrifera on remediation of copper contaminated soil. Acta agriculturae universitatis Jiangxiensis, 2022, 45 (1): 231- 242. | |
叶斌晖. 2018. 草酸青霉Penicillium oxalicum SL2对Pb2+的生物固定化、形态转化及分子机制研究. 杭州: 浙江大学. | |
Ye B H. 2018. Study on the bioimmobilization, speciation transformation and molecular mechanism of Pb2+ by Penicillium oxalicum SL2. Hangzhou: Zhejiang University. [in Chinese] | |
邹俊康. 2021. 甘油磷酰胆碱的制备与纯化. 杭州: 浙江大学. | |
Zou J K. 2021. Preparation and purification of glycerolphosphorylcholine. Hangzhou: Zhejiang University. [in Chinese] | |
Afzal M, Shabir G, Tahseen R, et al. Endophytic Burkholderia sp. strain PsJN improves plant growth and phytoremediation of soil irrigated with textile effluent. Clean-Soil Air Water, 2014, 42 (9): 1304- 1310.
doi: 10.1002/clen.201300006 |
|
Arvind G, Sood S, Rahi P, et al. Diversity analysis of diazotrophic bacteria associated with the roots of tea (Camellia sinensis (L. ) O. Kuntze). Journal of Microbiology and Biotechnology, 2011, 21 (6): 545- 555.
doi: 10.4014/jmb.1012.12022 |
|
Begum N, Afzal S, Zhao H H, et al. Shoot endophytic plant growth-promoting bacteria reduce cadmium toxicity and enhance switchgrass (Panicum virgatum L. ) biomass. Acta Physiologiae Plantarum, 2018, 40 (9): 170.
doi: 10.1007/s11738-018-2737-1 |
|
Behrends V, Ryall B, Wang X, et al. Metabolic profiling of Pseudomonas aeruginosa demonstrates that the anti-sigma factor MucA modulates osmotic stress tolerance. Molecular Biosystems, 2010, 6 (3): 562- 569.
doi: 10.1039/b918710c |
|
Byers A K, Condron L, O'Callaghan M, et al. Whole genome sequencing of Penicillium and Burkholderia strains antagonistic to the causal agent of kauri dieback disease (Phytophthora agathidicida) reveals biosynthetic gene clusters related to antimicrobial secondary metabolites. Molecular Ecology Resources, 2023, 00, 1- 17. | |
Cheng Z Y, Shi C J, Gao X J, et al. Biochemical and metabolomic responses of antarctic bacterium Planococcus sp. O5 induced by copper ion. Toxics, 2022, 10 (6): 302.
doi: 10.3390/toxics10060302 |
|
Dourado M N, Souza L A, Martins P F, et al. 2014. Burkholderia sp. SCMS54 triggers a global stress defense in tomato enhancing cadmium tolerance. Water, Air and Soil Pollution, 225(10): 2159. | |
Esmaeel Q, Jacquard C, Clément C, et al. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L. ). World Journal of Microbiology & Biotechnology, 2019, 35 (3): 40. | |
Guo H J, Luo S L, Chen L A, et al. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 2010, 101 (22): 8599- 8605.
doi: 10.1016/j.biortech.2010.06.085 |
|
Guo J K, Chi J. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L. ) Merr. in Cd-contaminated soil. Plant and Soil, 2014, 375 (1-2): 205- 214.
doi: 10.1007/s11104-013-1952-1 |
|
Guo J K, Tang S R, Ju X H, et al. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World Journal of Microbiology and Biotechnology, 2011, 27 (12): 2835- 2844.
doi: 10.1007/s11274-011-0762-y |
|
Huang Y, Wang L Y, Wang W J, et al. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Science of The Total Environment, 2019, 651, 3034- 3042.
doi: 10.1016/j.scitotenv.2018.10.185 |
|
Hug I, Feldman M F. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology, 2010, 21 (2): 138- 151. | |
Kan X Q, Dong Y Q, Feng L, et al. Contamination and health risk assessment of heavy metals in China’s lead–zinc mine tailings: a meta–analysis. Chemosphere, 2021, 267, 128909.
doi: 10.1016/j.chemosphere.2020.128909 |
|
Li X, Tian L Y, Li B Q, et al. Polyaspartic acid enhances the Cd phytoextraction efficiency of Bidens pilosa by remolding the rhizospheric environment and reprogramming plant metabolism. Chemosphere, 2022, 307, 136068.
doi: 10.1016/j.chemosphere.2022.136068 |
|
Li Y L, Wei S M, Chen X T, et al. Isolation of cadmium-resistance and siderophore-producing endophytic bacteria and their potential use for soil cadmium remediation. Heliyon, 2023, 9 (7): e17661.
doi: 10.1016/j.heliyon.2023.e17661 |
|
Li Z Y, Ma Z W, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of The Total Environment, 2014, 468, 843- 853. | |
Liu C J, Lin H, Dong Y B, et al. Identification and characterization of plant growth-promoting endophyte RE02 from Trifolium repens L. in mining smelter. Environmental Science and Pollution Research, 2019, 26 (17): 17236- 17247.
doi: 10.1007/s11356-019-04904-w |
|
Liu Y, Yang K H, Zhang H J, et al. Combating antibiotic tolerance through activating bacterial metabolism. Frontiers in Microbiology, 2020, 11, 577564.
doi: 10.3389/fmicb.2020.577564 |
|
Mishra S, Huang Y H, Li J Y, et al. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere, 2022, 294, 133609.
doi: 10.1016/j.chemosphere.2022.133609 |
|
Nanda M, Kumar V, Sharma D K. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquatic Toxicology, 2019, 212, 1- 10.
doi: 10.1016/j.aquatox.2019.04.011 |
|
Oyetibo G O, Ilori M O, Obayori O S, et al. Equilibrium studies of cadmium biosorption by presumed non-viable bacterial strains isolated from polluted sites. International Biodeterioration & Biodegradation, 2014, 91, 37- 44. | |
Oyetibo G O, Ilori M O, Obayori O S, et al. Metal biouptake by actively growing cells of metal-tolerant bacterial strains. Environmental Monitoring and Assessment, 2015, 187 (8): 525.
doi: 10.1007/s10661-015-4731-z |
|
Santos-Villalobos S, Barrera-Galicia G C, Miranda-Salcedo M A, et al. Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World Journal of Microbiology & Biotechnology, 2012, 28 (8): 2615- 2623. | |
Sha Y H, Hu N, Wang Y D, et al. Enhanced phytoremediation of uranium contaminated soil by artificially constructed plant community plots. Journal of Environmental Radioactivity, 2019, 208, 106036. | |
Sun L J, Cao X Y, Tan C Y, et al. Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics. Ecotoxicology and Environmental Safety, 2020, 205, 111152.
doi: 10.1016/j.ecoenv.2020.111152 |
|
Wang B K, Chen W L. Detrimental health relationship between blood lead and cadmium and the red blood cell folate level. Scientific Reports, 2022, 12 (1): 6628.
doi: 10.1038/s41598-022-10562-9 |
|
Wang J L, Zhang T, Shen X T, et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics, 2016, 12 (7): 116.
doi: 10.1007/s11306-016-1050-5 |
|
Wang X, Zhang X, Liu X M, et al. Physiological, biochemical and proteomic insight into integrated strategies of an endophytic bacterium Burkholderia cenocepacia strain YG-3 response to cadmium stress. Metallomics, 2019a, 11 (7): 1252- 1264.
doi: 10.1039/c9mt00054b |
|
Wang Y T, Ren W J, Li Y, et al. Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). Science of The Total Environment, 2019b, 646, 212- 219.
doi: 10.1016/j.scitotenv.2018.07.247 |
|
Wu B H, Peng H, Sheng M P, et al. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicology and Environmental Safety, 2021, 220, 112368.
doi: 10.1016/j.ecoenv.2021.112368 |
|
Wu Z X, Hu H, Wang C X, et al. Association between serum folate levels and blood concentrations of cadmium and lead in US adults. Environmental Science and Pollution Research, 2022, 29 (3): 3565- 3574.
doi: 10.1007/s11356-021-15767-5 |
|
You L X, Zhang R R, Dai J X, et al. Potential of cadmium resistant Burkholderia contaminans strain ZCC in promoting growth of soy beans in the presence of cadmium. Ecotoxicology and Environmental Safety, 2021, 211, 111914.
doi: 10.1016/j.ecoenv.2021.111914 |
|
Yu M, Tang Y W, Lu L X, et al. CysB is a key regulator of the antifungal activity of Burkholderia pyrrocinia JK-SH007. International Journal of Molecular Sciences, 2023, 24 (9): 8067.
doi: 10.3390/ijms24098067 |
[1] | Yuxin Geng,Hongjiao Li,Jianwei Zheng,Qin Zhang,Lina Yu,Jiaqiu Li,Baohui Li. Difference of Secondary Metabolites in Spines of Gleditsia sinensis and Gleditsia microphylla [J]. Scientia Silvae Sinicae, 2022, 58(4): 82-94. |
[2] | Xiaoyu Lu,Zhu Chen,Fei Tang,Songling Fu,Jie Ren. Combined Transcriptomic and Metabolomic Analysis Reveals Mechanism of Anthocyanin Changes in Red Maple(Acer rubrum) Leaves [J]. Scientia Silvae Sinicae, 2020, 56(1): 38-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||