Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (11): 139-148.doi: 10.11707/j.1001-7488.LYKX20230073
Previous Articles Next Articles
Lei Liu1,2,Lijuan Zhao1,2,Jiaqi Liu1,2,Huisheng Zhang1,2,Zhiwei Zhang1,2,Ruifen Huang3,Ruihe Gao1,2,*
Received:
2023-02-25
Online:
2024-11-25
Published:
2024-11-30
Contact:
Ruihe Gao
CLC Number:
Lei Liu,Lijuan Zhao,Jiaqi Liu,Huisheng Zhang,Zhiwei Zhang,Ruifen Huang,Ruihe Gao. Potentially Suitable Distribution Areas of Monochamus alternatus in China under Current and Future Climatic Scenarios Based on Optimized MaxEnt Model[J]. Scientia Silvae Sinicae, 2024, 60(11): 139-148.
Table 1
The contribution rate of environmental variables affecting the distribution of M. alternatus"
环境变量 Environment variables | 贡献率 Contribution rate(%) | 适宜范围 Suitable range |
最干月降水量Precipitation of driest month (Bio14)/mm | 59 | 21~75 |
年降水量Annual precipitation (Bio12)/mm | 18.9 | 1 080~1 912 |
海拔 Elevation (Elev)/m | 9.9 | 6~269 |
温度季节性标准差Temperature seasonality (Bio4)/℃ | 3.7 | 1 285~1 345 |
等温性Isothermality (Bio3)(%) | 3.3 | 24~28 |
降水量季节性Precipitation seasonality (Bio15)(%) | 1.9 | 44~70 |
昼夜温差月均值Mean diurnal range (Bio2)/℃ | 1.4 | 6~9 |
最湿季度平均温度Mean temperature of the wettest quarter (Bio8)/℃ | 1.4 | 19~37 |
最暖季度降水量Precipitation of warmest quarter (Bio18)/mm | 0.5 | 444~692 |
Table 3
Areas of suitable habitats for M. alternatus under current and future climate scenarios 106 km2"
年份 Decade | 情景 Scenarios | 适生区类型 Suitable habitat type | ||
高High | 中Medium | 低Low | ||
当前Current | 0.63 | 0.71 | 0.67 | |
2050s | SSP126 | 0.75(19.05%) | 0.72(1.41%) | 0.65(?2.99%) |
SSP585 | 0.76(20.63%) | 0.71(?) | 0.64(?4.48%) | |
2100s | SSP126 | 0.75(19.05%) | 0.70(?1.41%) | 0.66(?1.49%) |
SSP585 | 0.73(15.87%) | 0.75(5.63%) | 0.63(?5.97%) |
崔骁芃, 石 娟, 王海香, 等. 基于MaxEnt模型的红脂大小蠹在中国适生区的预测. 植物保护学报, 2019, 46 (4): 925- 926. | |
Cui X P, Shi J, Wang H X, et al. Predicting potential geographical distribution of red turpentine beetle Dendroctonus valens in China based on MaxEnt model. Journal of Plant Protection, 2019, 46 (4): 925- 926. | |
何贵友, 付觉民, 高富先, 等. 松墨天牛的生物学特性及防治控制技术. 河南林业科技, 2005, 25 (2): 53- 54.
doi: 10.3969/j.issn.1003-2630.2005.02.026 |
|
He G Y, Fu J M, Gao F X, et al. Biological characteristics and control techniques of Monochamus alternatus. Journal of Henan Forestry Science and Technology, 2005, 25 (2): 53- 54.
doi: 10.3969/j.issn.1003-2630.2005.02.026 |
|
李 慧. 2021. 热激蛋白在松墨天牛响应高温胁迫中的功能研究. 南京: 南京林业大学. | |
Li H. 2021. Study on the function of heat shock protein in response to high temperature stress of Monochamus alternatus. Nanjing: Nanjing Forestry University. [in Chinese] | |
李 璇, 李 垚, 方炎明. 基于优化的MaxEnt模型预测白栎在中国的潜在分布区. 林业科学, 2018, 54 (8): 153- 164.
doi: 10.11707/j.1001-7488.20180817 |
|
Li X, Li Y, Fang Y M. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized MaxEnt model. Scientia Silvae Sinicae, 2018, 54 (8): 153- 164.
doi: 10.11707/j.1001-7488.20180817 |
|
李世成, 易自力, 廖剑锋, 等. 基于MaxEnt模型对尼泊尔芒适生区时空分布的预测. 湖南农业大学学报(自然科学版), 2020, 46 (2): 176- 183. | |
Li S C, Yi Z L, Liao J F, et al. Prediction of temporal and spatial distribution of suitable areas of Miscanthus nepalensis based on MaxEnt. Journal of Hunan Agricultural University (Natural Sciences), 2020, 46 (2): 176- 183. | |
李霜雯, 吕晓亮, 田宇明, 等. 大连市松材线虫病典型发生区松墨天牛种群动态. 辽宁林业科技, 2019, 6, 20- 22.
doi: 10.3969/j.issn.1001-1714.2019.04.006 |
|
Li S W, Lü X L, Tian Y M, et al. Population dynamics of Monochamus alternatus in the typical area of pine wilt disease in Dalian City. Liaoning Forestry Science and Technology, 2019, 6, 20- 22.
doi: 10.3969/j.issn.1001-1714.2019.04.006 |
|
刘 洋, 石 娟. 气候变化背景下埃及吹绵蚧在中国的适生区预测. 植物保护, 2020, 46 (1): 108- 117. | |
Liu Y, Shi J. Prediction of potential geographical distribution of Icerya aegyptiaca in China under climate change. Plant Protection, 2020, 46 (1): 108- 117. | |
沈梦伟, 陈圣宾, 毕孟杰, 等. 中国蚂蚁丰富度地理分布格局及其与环境因子的关系. 生态学报, 2016, 36 (23): 7732- 7739. | |
Shen M W, Chen S B, Bi M J, et al. Relationships between geographic patterns of ant species richness and environmental factors in China. Acta Ecologica Sinica, 2016, 36 (23): 7732- 7739. | |
时 鹏, 王 壮, 曾 辉, 等. 低温条件下松墨天牛在我国适生区分布预测. 西北林学院学报, 2019, 34 (4): 156- 161.
doi: 10.3969/j.issn.1001-7461.2019.04.23 |
|
Shi P, Wang Z, Zeng H, et al. Tolerance to temperature stresses on Monochamus alternatus and its potential range in China. Journal of Northwest Forestry University, 2019, 34 (4): 156- 161.
doi: 10.3969/j.issn.1001-7461.2019.04.23 |
|
宋红敏, 徐汝梅. 松墨天牛的全球潜在分布区分析. 昆虫知识, 2006, 43 (4): 535- 539. | |
Song H M, Xu R M. Global potential geographical distribution of Monochamus alternatus. Chinese Journal of Applied Entomology, 2006, 43 (4): 535- 539. | |
王玲萍. 松墨天牛生物学特性的研究. 福建林业科技, 2004, 31 (3): 23- 26. | |
Wang L P. Study on the biological characteristic of Monochamus alternatus Hope. Journal of Fujian Forestry Science and Technology, 2004, 31 (3): 23- 26. | |
王曦茁, 曹业凡, 汪来发, 等. 松材线虫病发生及防控现状. 环境昆虫学报, 2018, 40 (2): 256- 267. | |
Wang X Z, Cao Y F, Wang L F, et al. Current status of pine wilt disease and its control status. Journal of Environmental Entomology, 2018, 40 (2): 256- 267. | |
王艳君, 高 泰, 石 娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报, 2021, 43 (9): 59- 69.
doi: 10.12171/j.1000-1522.20200416 |
|
Wang Y J, Gao T, Shi J. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt. Journal of Beijing Forestry University, 2021, 43 (9): 59- 69.
doi: 10.12171/j.1000-1522.20200416 |
|
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 2007, 15 (4): 365- 372.
doi: 10.3321/j.issn:1005-0094.2007.04.005 |
|
Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 2007, 15 (4): 365- 372.
doi: 10.3321/j.issn:1005-0094.2007.04.005 |
|
徐瑞钧, 周汝良, 刘乾飞, 等. 气候变暖趋势下松墨天牛适生区分布模拟与预测. 林业资源管理, 2020, 4, 109- 116. | |
Xu R J, Zhou R L, Liu Q F, et al. Prediction and simulation of the suitable habitat of Monochamus alternatus under climate warming. Forest Resources Management, 2020, 4, 109- 116. | |
杨贵军, 王 敏, 杨益春, 等. 贺兰山甲虫物种丰富度分布格局及其环境解释. 生物多样性, 2019, 27 (12): 1309- 1319.
doi: 10.17520/biods.2019184 |
|
Yang G J, Wang M, Yang Y C, et al. Distribution patterns and environmental interpretation of beetle species richness in Helan Mountain of northern China. Biodiversity Science, 2019, 27 (12): 1309- 1319.
doi: 10.17520/biods.2019184 |
|
曾 权, 朱雪珍, 周利娟. 基于优化MaxEnt模型的南方三棘果在中国的潜在适生区预测. 华南农业大学学报, 2023, 44 (2): 254- 262.
doi: 10.7671/j.issn.1001-411X.202203041 |
|
Zeng Q, Zhu X Z, Zhou L J. Prediction of potential suitable region for Emex australis in China based on the optimized MaxEnt model. Journal of South China Agricultural University, 2023, 44 (2): 254- 262.
doi: 10.7671/j.issn.1001-411X.202203041 |
|
张彦龙, 王小艺, 杨忠岐, 等. 松材线虫病媒介昆虫的天敌及其应用研究进展. 中国森林病虫, 2022, 41 (3): 21- 29. | |
Zhang Y L, Wang X Y, Yang Z Q, et al. Research progress on natural enemies and their application of the vector insects of Bursaphelenchus xylophilus. Forest Pest and Disease, 2022, 41 (3): 21- 29. | |
周玉婷, 葛雪贞, 邹 娅, 等. 基于MaxEnt模型的长林小蠹的全球及中国适生区预测. 北京林业大学学报, 2022, 44 (11): 90- 99.
doi: 10.12171/j.1000-1522.20210345 |
|
Zhou Y T, Ge X Z, Zou Y, et al. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the MaxEnt model. Journal of Beijing Forestry University, 2022, 44 (11): 90- 99.
doi: 10.12171/j.1000-1522.20210345 |
|
朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用. 生物多样性, 2013, 21 (1): 90- 98.
doi: 10.3724/SP.J.1003.2013.09106 |
|
Zhu G P, Liu G Q, Bu W J, et al. Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 2013, 21 (1): 90- 98.
doi: 10.3724/SP.J.1003.2013.09106 |
|
朱耿平, 刘 强, 高玉葆. 提高生态位模型转移能力来模拟入侵物种的潜在分布. 生物多样性, 2014, 22 (2): 223- 230.
doi: 10.3724/SP.J.1003.2014.08178 |
|
Zhu G P, Liu Q, Gao Y B. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 2014, 22 (2): 223- 230.
doi: 10.3724/SP.J.1003.2014.08178 |
|
朱耿平, 乔慧捷. MaxEnt模型复杂度对物种潜在分布区预测的影响. 生物多样性, 2016, 24 (10): 1189- 1196.
doi: 10.17520/biods.2016265 |
|
Zhu G P, Qiao H J. Effect of MaxEnt model complexity on the prediction of species potential distribution area. Biodiversity Science, 2016, 24 (10): 1189- 1196.
doi: 10.17520/biods.2016265 |
|
Anderson R P, Gonzalez I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with MaxEnt. Ecological Modelling, 2011, 222 (15): 2796- 2811. | |
Bradie J, Leung B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography, 2017, 44 (6): 1344- 1361. | |
Carpenter G, Gillison A N, Winter J. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity & Conservation, 1993, 2 (6): 667- 680. | |
Chejara V K, Kriticos D J, Kristiansen P, et al. The current and future potential geographical distribution of Hyparrhenia hirta. Weed Research, 2010, 50 (2): 174- 184. | |
Choi W I, Song H J, Kim D S, et al. Dispersal patterns of pine wilt disease in the early stage of its invasion in south Korea. Forests, 2017, 8 (11): 411. | |
Cruz G M, Faria A P J, Juen L. Patterns and metacommunity structure of aquatic insects (Trichoptera) in Amazonian streams depend on the environmental conditions. Hydrobiologia, 2022, 849 (12): 2831- 2843. | |
Fielding A H, Bell J F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 1997, 24 (1): 38- 49. | |
Fotheringham A S, Oshan T M. Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, 2016, 18 (4): 303- 329. | |
Gao R H, Liu L, Zhao L J, et al. Potentially suitable geographical area for Monochamus alternatus under current and future climatic scenarios based on optimized MaxEnt model. Insects, 2023, 14 (2): 182. | |
Heikkinen R K, Luoto M, Araújo M B, et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography: Earth and Environment, 2006, 30 (6): 751- 777. | |
Jin Z N, Yu W T, Zhao H X, et al. Potential global distribution of invasive alien species, Anthonomus grandis boheman, under current and future climate using optimal MaxEnt model. Agriculture, 2022, 12 (11): 1759. | |
Kim J, Jung H, Park Y H. Predicting Potential Distribution of Monochamus alternatus Hope responding to climate change in Korea. Korean Journal of Applied Entomology, 2016, 55 (4): 501- 511. | |
Lee C M, Lee D S, Kwon T S, et al. Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects, 2021, 12 (3): 229. | |
Li X Y, Xu D P, Jin Y W, et al. Predicting the current and future distributions of Brontispa longissima (Coleoptera: Chrysomelidae) under climate change in China. Global Ecology and Conservation, 2021, 25, e01444. | |
Ma R Y, Hao S G, Kong W N, et al. Cold hardiness as a factor for assessing the potential distribution of the Japanese pine sawyer Monochamus alternatus(Coleoptera: Cerambycidae) in China. Annals of Forest Science, 2006, 63 (5): 449- 456. | |
Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 2013, 36 (10): 1058- 1069.
doi: 10.1111/j.1600-0587.2013.07872.x |
|
Muscarella R, Galante P J, Soley-Guardia M, et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods in Ecology and Evolution, 2014, 5 (11): 1198- 1205. | |
Phillips S J, Anderson R P, Dudík M, et al. Opening the black box: an open-source release of MaxEnt. Ecography, 2017, 40 (7): 887- 893. | |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190 (3/4): 231- 259. | |
Porfirio L L, Harris R M B, Lefroy E C, et al. Improving the use of species distribution models in conservation planning and management under climate change. PLOS ONE, 2014, 9 (11): e113749. | |
Qin Z, Zhang J E, DiTommaso A, et al. Predicting invasions of Wedelia trilobata (L. ) Hitchc. with MaxEnt and GARP models. Journal of Plant Research, 2015, 128 (5): 763- 775. | |
Rutherford T A, Mamiya Y, Webster J M. Nematode-induced pine wilt disease: factors influencing its occurrence and distribution. Forest Science, 1990, 36 (1): 145- 155. | |
Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecological Modelling, 2011, 222 (8): 1343- 1346. | |
Sultana S, Baumgartner J B, Dominiak B C, et al. 2020. Impacts of climate change on high priority fruit fly species in Australia. PLOS ONE, 15(2): e0213820. | |
Takahashi D, Park Y S. 2020. Spatial heterogeneities of human-mediated dispersal vectors accelerate the range expansion of invaders with source–destination-mediated dispersal. Scientific Reports, 10: 21410. | |
Wan J, Wang R, Ren Y L, et al. Potential distribution and the risks of Bactericera cockerelli and its associated plant pathogen candidatus Liberibacter solanacearum for global potato production. Insects, 2020, 11 (5): 298. | |
Wang C, Hawthorne D, Qin Y J, et al. Impact of climate and host availability on future distribution of Colorado potato beetle. Scientific Reports, 2017, 7, 4489. | |
Warren D L, Seifert S N. Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 2011, 21 (2): 335- 342. | |
Xu D P, Zhuo Z H, Wang R L, et al. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 2019, 19, e00691. | |
Yan H Y, He J, Xu X C, et al. Prediction of potentially suitable distributions of Codonopsis pilosula in China based on an optimized MaxEnt model. Frontiers in Ecology and Evolution, 2021, 9, 773396. |
[1] | Yutian Zhang,Junnan Shi,Huaiqing Zhang,Binglun Wu. Spatiotemporal Patterns and Driving Forces of Vegetation Restoration and Degradation in Dongting Lake Wetland [J]. Scientia Silvae Sinicae, 2024, 60(8): 1-13. |
[2] | Jiaojun Zhu,G. Geoff Wang,Huaiqing Zhang,Tian Gao. On the Research of Climate-Smart Forestry [J]. Scientia Silvae Sinicae, 2024, 60(7): 1-7. |
[3] | Zhao Zhuqi, Hu Zhenhong, He Xian, Huang Zhiqun. Research Progresses on the Dynamics of Microbial Community Establishment in Woody Debris [J]. Scientia Silvae Sinicae, 2024, 60(2): 106-117. |
[4] | Jiayan Shen,Zexin Fan,Hui Zhang,Xinhua Peng,Jinhua Li,Xiao Yu,Wenxiong Yang,Yunfang Li,Xinyu Li,Yuening Liu,Jianrong Su. Response Heterogeneity of Radial Growth of the Three Pine Species to Climate Factors in Yunnan Province [J]. Scientia Silvae Sinicae, 2024, 60(11): 48-62. |
[5] | Wanting Ge,Ying Liu,Zhijia Zhao,Shen Zhang,Jie Li,Guijuan Yang,Guanzheng Qu,Junhui Wang,Wenjun Ma. Prediction of Potential Distribution for Huangxin (Catalpa) in China under Different Climate Scenarios [J]. Scientia Silvae Sinicae, 2024, 60(11): 63-74. |
[6] | Panpan Xue,Ning Miao,Ximing Yue,Qiong Tao,Yuandong Zhang,Qiuhong Feng,Kangshan Mao. Divergence Phenomenon of Radial Growth of Minjiang Fir in Response to Warming at Different Slope Aspects and Elevations on the Eastern Margin of the Tibetan Plateau [J]. Scientia Silvae Sinicae, 2023, 59(7): 65-77. |
[7] | Xuelei Wei,Guogang Zhang,Ru Jia,Yunrui Ji,Hongying Xu,Zeyu Yang,Huajin Liu,Yulin Liu,Peiyu Yang. Variation of Waterbird Diversity and Its Affecting Factors in Xingkai Lake, Heilongjiang Province [J]. Scientia Silvae Sinicae, 2023, 59(6): 118-129. |
[8] | Ya Wang,Junhui Wang,Fude Wang,Yifu Liu,Cancan Tan,Yanchao Yuan,Wen Nie,Jianfeng Liu,Ermei Chang,Zirui Jia. Simulation of Suitable Distribution Areas of Picea koraiensis in China Since the Last Interglacial and Under Future Climate Scenarios [J]. Scientia Silvae Sinicae, 2023, 59(12): 1-12. |
[9] | Shuning Zhang,Junxing Chen,Dun Ao,Mei Hong,Yaqian Zhang,Fuhai Bao,Lin Wang,Tana Wuyun,Yu’e Bai,Wenquan Bao. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change [J]. Scientia Silvae Sinicae, 2023, 59(12): 25-36. |
[10] | Liqing Si,Mingyu Wang,Feng Chen,Lifu Shu,Fengjun Zhao,Weike Li. Distribution Characteristics of Lightning and the Warning of Lightning-Caused Forest Fires [J]. Scientia Silvae Sinicae, 2023, 59(10): 1-8. |
[11] | Guangnan Zheng,Xiuhao Yang,Manli Wei,Xialin Zheng. Population Dynamics of Monochamus alternatus Adults in Guangxi and Its Correlation with Pine Stand and Meteorological Factors [J]. Scientia Silvae Sinicae, 2023, 59(1): 128-142. |
[12] | Junnan Li,Runkai Chen,Yu Fu,Mengling Cai,Bingrong Huang,Yun Xu,Songqing Wu,Feiping Zhang. Research on Paracarophenax alternatus Ⅲ. Phoretic Characteristics by Monochamus alternatus Adults [J]. Scientia Silvae Sinicae, 2022, 58(9): 128-137. |
[13] | Junnan Li,Runkai Chen,Yu Fu,Mengling Cai,Bingrong Huang,Yun Xu,Songqing Wu,Feiping Zhang. Research on Paracarophenax alternatusⅡ. Mobility and Tropism of Female Adults [J]. Scientia Silvae Sinicae, 2022, 58(8): 149-156. |
[14] | Dongsheng Wang,Wei Zhao,Beibei Cheng,Jijun Zhang. Potential Suitable Areas of Crataegus pinnatifida in China based on MaxEnt Modeling [J]. Scientia Silvae Sinicae, 2022, 58(7): 43-50. |
[15] | Junnan Li,Yuzhen Zhu,Runkai Chen,Yu Fu,Mengling Cai,Bingrong Huang,Yun Xu,Songqing Wu,Feiping Zhang. Research on Paracarophenax alternatus Ⅰ. Biological Characteristics [J]. Scientia Silvae Sinicae, 2022, 58(6): 79-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||