Scientia Silvae Sinicae ›› 2022, Vol. 58 ›› Issue (7): 43-50.doi: 10.11707/j.1001-7488.20220705
• Research papers • Previous Articles Next Articles
Dongsheng Wang,Wei Zhao,Beibei Cheng,Jijun Zhang
Received:2022-03-03
Online:2022-07-25
Published:2022-11-03
CLC Number:
Dongsheng Wang,Wei Zhao,Beibei Cheng,Jijun Zhang. Potential Suitable Areas of Crataegus pinnatifida in China based on MaxEnt Modeling[J]. Scientia Silvae Sinicae, 2022, 58(7): 43-50.
Table 1
Contribution rate of 20 environmental factors obtained by the first operation"
| 环境因子 Environment variables | 初次运算贡献率 Contribution rate of initial operation (%) | 环境因子 Environment variables | 初次运算贡献率 Contribution rate of initial operation (%) | |
| 温度季节变化标准差 Temperature seasonality standard deviation | 25.6 | 最冷季均温Mean temperature of coldest quarter/℃ | 2.7 | |
| 最热季降水量Precipitation of warmest quarter/mm | 20.0 | 最冷月最低温Minimum temperature of coldest month/℃ | 1.6 | |
| 海拔Altitude/m | 7.8 | 最暖季度均温Mean temperature of warmest quarter/℃ | 1.3 | |
| 最湿月降水量Precipitation of wettest month/mm | 7.1 | 年均温Annual mean temperature/℃ | 1.3 | |
| 最热月最高温Maximum temperature of warmest month/℃ | 7.1 | 最干季降水量Precipitation of driest quarter/mm | 1.2 | |
| 最干季均温Mean temperature of driest quarter/℃ | 5.9 | 年温度变化范围Temperature annual range/℃ | 1.2 | |
| 年降水量Annual precipitation/mm | 4.9 | 平均日较差Mean diurnal range/℃ | 1.0 | |
| 最干月降水量Precipitation of driest month/mm | 3.8 | 最冷季降水量Precipitation of coldest quarter/mm | 0.3 | |
| 最湿季均温Mean temperature of wettest quarter/℃ | 3.7 | 等温性Isothermality | 0.2 | |
| 最湿季降水量Precipitation of wettest quarter/mm | 3.1 | 降水量季节变异系数 Precipitation seasonality coefficient of variation | 0.1 |
Table 2
Contribution rate of environmental factors and suitable ranges of Crataegus pinnatifida"
| 环境因子 Environment variables | 二次运算贡献率 Contribution rate of secondary operation(%) | 适宜范围 Suitable range | 最适值 Optimum value |
| 最热季降水量Precipitation of warmest quarter/mm | 28.6 | 354.94~477.89 | 372.51 |
| 温度季节变化标准差Temperature seasonality standard deviation | 27.2 | 93.93~107.31 | 99.42 |
| 最干季均温Mean temperature of driest quarter/℃ | 13 | -3.44~2.04 | 0.96 |
| 最热月最高温Maximum temperature of warmest month/℃ | 11.8 | 27.17~32.66 | 27.90 |
| 年降水量Annual precipitation/mm | 10 | 522.45~869.04 | 728.65 |
| 海拔Altitude/m | 7.7 | 2.23~243.02 | 25.53 |
| 平均日较差Mean diurnal range/℃ | 1.2 | 9.25~12.98 | 10.85 |
| 降水量季节变化变异系数Precipitation seasonality coefficient of variation | 0.4 | < 0.19 | 0.15 |
| 等温性Isothermality | 0.2 | 90.75~166.7 | 153.22 |
| 合计Total | 100 |
Table 3
Potential suitable areas of Crataegus pinnatifida in China"
| 省级行政区 Provincial administrative region | 低适生区 Low suitable area/km2 | 中适生区 Medium suitable area/km2 | 高适生区 High suitable area/km2 | 适生区面积 Total suitable area/km2 | 占适生区总面积比例 Proportion of the total suitable area(%) |
| 山东Shandong | 313 | 4 080 | 149 214 | 153 607 | 6.176 4 |
| 河北Hebei | 21 353 | 40 883 | 100 167 | 162 403 | 6.530 1 |
| 辽宁Liaoning | 5 144 | 45 267 | 97 355 | 147 766 | 5.941 5 |
| 河南Henang | 40 864 | 42 467 | 77 161 | 160 492 | 6.453 2 |
| 山西Shanxi | 47 907 | 44 418 | 57 622 | 149 947 | 6.029 2 |
| 陕西Shaanxi | 59 008 | 76 944 | 36 524 | 172 476 | 6.935 1 |
| 吉林Jilin | 59 711 | 106 416 | 19 564 | 185 691 | 7.466 5 |
| 江苏Jiangsu | 61 706 | 14 112 | 13 135 | 88 953 | 3.576 7 |
| 北京Beijing | 827 | 4 230 | 11 262 | 16 319 | 0.656 2 |
| 内蒙古Inner Mongolia | 238 849 | 115 642 | 8 424 | 362 915 | 14.592 5 |
| 天津Tianjin | 0 | 6 773 | 5 127 | 11 900 | 0.478 5 |
| 黑龙江Heilongjiang | 345 947 | 78 803 | 4 531 | 429 281 | 17.261 0 |
| 安徽Anhui | 100 285 | 20 715 | 3 172 | 124 172 | 4.992 8 |
| 湖北Hubei | 117 860 | 3 119 | 11 | 120 990 | 4.864 9 |
| 甘肃Gansu | 45 234 | 15 076 | 0 | 60 310 | 2.425 0 |
| 江西Jiangxi | 36 901 | 533 | 0 | 37 434 | 1.505 2 |
| 宁夏Ningxia | 5 337 | 51 | 0 | 5 388 | 0.216 6 |
| 青海Qinghai | 4 858 | 2 | 0 | 4 860 | 0.195 4 |
| 广西Guangxi | 3 | 0 | 0 | 3 | 0.000 1 |
| 湖南Hunan | 59 485 | 0 | 0 | 59 485 | 2.391 8 |
| 上海Shanghai | 5 282 | 0 | 0 | 5 282 | 0.212 4 |
| 四川Sichuan | 28 | 0 | 0 | 28 | 0.001 1 |
| 新疆Xinjiang | 30 | 0 | 0 | 30 | 0.001 2 |
| 浙江Zhejiang | 26 927 | 0 | 0 | 26 927 | 1.082 7 |
| 重庆Chongqin | 343 | 0 | 0 | 343 | 0.013 8 |
| 合计Total | 1 284 202 | 619 531 | 583 269 | 2 487 002 | 100.000 0 |
| 常红, 刘彤, 王大伟, 等. 气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布. 中国沙漠, 2019, 39 (1): 110- 118. | |
| Chang H , Liu T , Wang D W , et al. Haloxylon ammodendron's potential distribution under climate change in arid areas of northwest China. Journal of Desert Research, 2019, 39 (1): 110- 118. | |
| 陈爱莉, 龚伟, 孔芬, 等. 气候变化对杨梅种植适宜区的影响. 扬州大学学报(农业与生命科学版), 2021, 42 (4): 96- 102. | |
| Chen A L , Gong W , Kong F , et al. Predicting the influence of climate change on the suitable range for planting Myrica rubra. Journal of Yangzhou University (Agricultural and Life Science Edition), 2021, 42 (4): 96- 102. | |
| 董文轩. 中国果树科学与实践——山楂. 西安: 陕西科学技术出版社, 2015. | |
| Dong W X . Chinese fruit tree science and practice - hawthorn. Xi'an: Shaanxi science and Technology Press, 2015. | |
| 李丽鹤, 刘会玉, 林振山, 等. 基于MAXENT和ZONATION的加拿大一枝黄花入侵重点监控区确定. 生态学报, 2017, 37 (9): 3124- 3132. | |
| Li L H , Liu H Y , Lin Z S , et al. Identifying priority areas for monitoring the invasion of Solidago canadensis based on MAXENT and ZONATION. Acta Ecologica Sinica, 2017, 37 (9): 3124- 3132. | |
| 李文庆, 徐洲锋, 史鸣明, 等. 不同气候情景下四子柳的亚洲潜在地理分布格局变化预测. 生态学报, 2019, 39 (9): 3224- 3234. | |
| Li W Q , Xu Z F , Shi M M , et al. Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb. in Asia under different climate scenarios. Acta Ecologica Sinica, 2019, 39 (9): 3224- 3234. | |
| 刘雯. 浅谈山楂栽培技术及经济价值. 农业与技术, 2015, 35 (19): 93- 94. | |
| Liu W . Discussion on hawthorn cultivation technology and economic value. Agriculture and Technology, 2015, 35 (19): 93- 94. | |
|
屈振江, 周广胜. 中国主栽猕猴桃品种的气候适宜性区划. 中国农业气象, 2017, 38 (4): 257- 266.
doi: 10.3969/j.issn.1000-6362.2017.04.007 |
|
|
Qu Z J , Zhou G S . Regionalization of climatic suitability for major kiwifruit cultivars in China. Chinese Journal of Agrometeorology, 2017, 38 (4): 257- 266.
doi: 10.3969/j.issn.1000-6362.2017.04.007 |
|
| 沈涛, 虞泓, 王元忠. 滇龙胆草野生资源的地理分布与生物气候特征. 应用生态学报, 2019, 30 (7): 2291- 2300. | |
| Shen T , Yu H , Wang Y Z . Geographical distribution and bioclimatic characteristics of the wild Gentiana rigescens resources. Chinese Journal of Applied Ecology, 2019, 30 (7): 2291- 2300. | |
| 王国峥, 耿其芳, 肖孟阳, 等. 基于4种生态位模型的金钱松潜在适生区预测. 生态学报, 2020, 40 (17): 6096- 6104. | |
| Wang G Z , Geng Q F , Xiao M Y , et al. Predicting Pseudolarix amabilis potential habitat based on four Niche models. Acta Ecologica Sinica, 2020, 40 (17): 6096- 6104. | |
| 辛孝贵, 张育明. 中国山楂种质资源与利用. 北京: 中国农业出版社, 1997. | |
| Xin X G , Zhang Y M . Resources and utilization of hawthorn germplasm in China. Beijing: Chinese Agriculture Press, 1997. | |
| 张华, 赵浩翔, 徐存刚. 气候变化背景下孑遗植物桫椤在中国的潜在地理分布. 生态学杂志, 2021, 40 (4): 968- 979. | |
| Zhang H , Zhao H X , Xu C G . The potential geographical distribution of Alsophila spinulosain under climate change in China. Chinese Journal of Ecology, 2021, 40 (4): 968- 979. | |
| 张培玉. 我国山楂科研的主要成就和展望. 中国果树, 1989, (3): 6- 10. | |
| Zhang P Y . Main achievements and prospects of hawthorn scientific research in China. China Fruits, 1989, (3): 6- 10. | |
| 张童, 黄治昊, 彭杨靖, 等. 基于Maxent模型的软枣猕猴桃在中国潜在适生区预测. 生态学报, 2020, 40 (14): 4921- 4928. | |
| Zhang T , Huang Z H , Peng Y J , et al. Prediction of potential suitable areas of Actinidia arguta in China based on Maxent model. Acta Ecologica Sinica, 2020, 40 (14): 4921- 4928. | |
| 张殷波, 高晨虹, 秦浩. 山西翅果油树的适生区预测及其对气候变化的响应. 应用生态学报, 2018, 29 (4): 1156- 1162. | |
| Zhang Y B , Gao C H , Qin H . Prediction of the suitable distribution and responses to climate change of Elaeagnus mollis in Shanxi Province, China. Chinese Journal of Applied Ecology, 2018, 29 (4): 1156- 1162. | |
| 赵光华, 崔馨月, 王智, 等. 气候变化背景下我国酸枣潜在适生区预测. 林业科学, 2021, 57 (6): 158- 168. | |
| Zhao G H , Cui X Y , Wang Z , et al. Prediction of potential distribution of Ziziphus jujuba var. spinosa in China under context of climate change. Scientia Silvae Sinicae, 2021, 57 (6): 158- 168. | |
| 赵焕谆, 丰宝田. 中国果树志: 山楂卷. 北京: 中国林业出版社, 1996. | |
| Zhao H Z , Feng B T . Chinese fruit tree records: Hawthorn roll. Beijing: China Forestry Press, 1996. | |
| 赵金鹏, 王闫利, 陆兴利, 等. 软枣猕猴桃在中国的适生区分析及对未来气候变化的响应. 中国生态农业学报, 2020, 28 (10): 1523- 1532. | |
| Zhao J P , Wang Y L , Lu X L , et al. Climatic suitable area analysis and response to climate change of Actinidia arguta in China. Chinese Journal of Eco-Agriculture, 2020, 28 (10): 1523- 1532. | |
| 赵晓冏, 巩娟霄, 赵莎莎, 等. 样本量及其空间分布对物种分布模型的影响. 兰州大学学报(自然科学版), 2018, 54 (2): 208- 215. | |
| Zhao X J , Gong J X , Zhao S S , et al. Impact of sample size and spatial distribution on species distribution model. Journal of Lanzhou University (Natural Sciences), 2018, 54 (2): 208- 215. | |
| 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1974. | |
| Editorial Committee of Flora of China, Chinese Academy of Sciences . Flora of China. Beijing: Science Press, 1974. | |
| 庄鸿飞, 秦浩, 王伟, 等. 基于MaxEnt模型的云南红豆杉潜在适宜分布预测. 山西大学学报(自然科学版), 2018, 41 (1): 233- 240. | |
| Zhuang H F , Qin H , Wang W , et al. Prediction of the potential suitable distribution of Taxus yunnanensis based on MaxEnt model. Journal of Shanxi University (Natural Science Edition), 2018, 41 (1): 233- 240. | |
| Anderson R P , Peterson A T , Gómez-Laverde M . Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos, 2002, 98 (1): 3- 16. | |
| Barry S , Elith J . Error and uncertainty in habitat models. Journal of Applied Ecology, 2006, 43 (3): 413- 423. | |
| Chan L M , Brown J L , Yoder A D . Integrating statistical genetic and geospatial methods brings new power to phylogeography. Molecular Phylogenetics and Evolution, 2011, 59 (2): 523- 537. | |
| Elith J , H Graham C , P Anderson R , et al. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 2006, 29 (2): 129- 151. | |
| Elith J , Phillips S J , Hastie T , et al. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011, 17 (1): 43- 57. | |
| Graham M H . Confronting multicollinearity in ecological multiple regression. Ecology, 2003, 84 (11): 2809- 2815. | |
| Phillips S J , Anderson R P , Schapire R E . Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190 (3/4): 231- 259. | |
| Swets J A . Measuring the accuracy of diagnostic systems. Science, 1988, 240 (4857): 1285- 1293. | |
| Wang J R , Hawkins C D B , Letchford T . Photosynthesis, water and nitrogen use efficiencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes. Forest Ecology and Management, 1998, 112 (3): 233- 244. | |
| Warren D L , Glor R E , Turelli M . Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 2008, 62 (11): 2868- 2883. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||