Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (7): 24-34.doi: 10.11707/j.1001-7488.LYKX20220868
• Frontier & focus: Functional traits of woody plants • Previous Articles Next Articles
Kai Zhang1,2(),Yanli Sun3,Jichao Wei4,Yaqian Fan5,Xiaoxue Han5,Lin Li5,Xiaoshuai Wei1,2,Xinhao Li1,2,Peng Liu1,2,Tianshan Zha1,2,*(
)
Received:
2022-12-06
Online:
2023-07-25
Published:
2023-09-08
Contact:
Tianshan Zha
E-mail:2080908223@qq.com;tianshanzha@bjfu.edu.cn
CLC Number:
Kai Zhang,Yanli Sun,Jichao Wei,Yaqian Fan,Xiaoxue Han,Lin Li,Xiaoshuai Wei,Xinhao Li,Peng Liu,Tianshan Zha. Control of Environmental Factors on the Sap Flow at Daily and Seasonal Scales in Ulmus macrocarpa in Beijing, China[J]. Scientia Silvae Sinicae, 2023, 59(7): 24-34.
Table 1
Main parameters of the sampled trees in Ulmus macrocarpa plot"
编号 No. | 树高 Height/ m | 胸径 Diameter at breast height/cm | 木质部直径 Diameter of xylem/ cm | 心材直径 Diameter of heartwood/ cm | 边材面积 Sapwood area/ cm2 |
1 | 5.5 | 9.75 | 8.75 | 4 | 56.13 |
2 | 4.3 | 10.75 | 8.75 | 3 | 57.88 |
3 | 5.1 | 11.65 | 6.65 | 4 | 30.73 |
4 | 4.1 | 9.35 | 6.35 | 2 | 30.67 |
5 | 6.7 | 13,2 | 10.2 | 5 | 75.46 |
6 | 7.8 | 18.85 | 14.85 | 5 | 166.95 |
Table 2
Annual mean, minimum, maximum, standard deviation for sap flow (Js) and environmental factors"
变量 Variable | 年份 Year | 平均值 Mean | 最小值 Minimum | 最大值 Max. | 标准差 Standard deviation |
液流速率 Sap flow Js /(g·cm?2d?1) | 2019 2020 | 137.08 99.02 | 0.13 0.46 | 299.59 259.33 | 80.75 70.27 |
土壤含水量 Volumetric soil water content VWC /(m3·m?3) | 2019 2020 | 0.22 0.25 | 0.14 0.14 | 0.30 0.31 | 0.04 0.04 |
短波辐射 Shortwave radiation Rs/ (W·m?2) | 2019 2020 | 198.84 180.71 | 26.88 17.33 | 329.13 327.36 | 73.56 72.90 |
空气温度 Air temperature Ta / ℃ | 2019 2020 | 15.76 14.81 | ?0.048 1.64 | 25.15 22.25 | 4.99 5.10 |
饱和水汽压差 Vapor pressure deficit VPD/ kPa | 2019 2020 | 0.88 0.63 | 0.03 0.01 | 2.15 1.97 | 0.40 0.37 |
Table 3
Regressions between hourly sap flow (Js) and environmental factors in May to October"
月份Month | Js?VWC Y = a × X + b | Js?Rs Y = a × X + b | Js?Ta Y = a × X + b | Js?VPD Y = a × X + b |
5月May | a = ?56.57 b = 17.69 R2 = 0.04 × n = 1433 | a = 0.010 b = 1.05 R2 = 0.52 × n = 1433 | a = 0.61 b = ?5.00 R2 = 0.40 × n = 1433 | a = 4.64 b = ?1.65 R2 = 0.33 × n = 1433 |
6月June | a = ?4.24 b = 4.22 R2 = 0.0004 × n = 2622 | a = 0.011 b = 0.75 R2 = 0.80 × n = 2622 | a = 0.77 b = ?10.54 R2 = 0.53 × n = 2622 | a = 3.83 b = ?0.27 R2 = 0.38 × n = 2622 |
7月July | a = ?5.06 b = 4.21 R2 = 0.003 × n = 2311 | a = 0.012 b = 0.61 R2 = 0.76 × n = 2311 | a = 0.71 b = ?10.60 R2 = 0.47 × n = 2311 | a = 4.30 b = ?0.22 R2 = 0.41 × n = 2311 |
8月August | a = ?35.11 b = 12.23 R2 = 0.05 × n = 2670 | a = 0.013 b = 0.51 R2 = 0.71 × n = 2670 | a = 0.52 b = ?6.31 R2 = 0.20 × n = 2670 | a = 4.03 b = ?0.08 R2 = 0.23 × n = 2670 |
9月September | a = ?17.47 b = 6.68 R2 = 0.03 × n = 2718 | a = 0.013 b = 0.35 R2 = 0.74 × n = 2718 | a = 0.73 b = ?8.05 R2 = 0.51 × n = 2718 | a = 6.02 b = ?1.62 R2 = 0.50 × n = 2718 |
10月October | a = ?7.68 b = 2.12 R2 = 0.04 × n = 2930 | a = 0.001 b = 0.16 R2 = 0.06 × n = 2930 | a = 0.10 b = ?0.38 R2 = 0.20 × n = 2930 | a = 0.85 b = ?0.27 R2 = 0.07 × n = 2930 |
党宏忠, 冯金超, 韩 辉. 2020. 沙地樟子松边材液流速率的方位差异特征. 林业科学, 56(1): 29−37. | |
Dang H Z, Feng J C Han H. 2020. Characteristics of azimuthal variation of sap flux density in Pinus sylvestris var. mongolica grown in sandy land. Scientia Silvae Sinicae, 56(1): 29−37.[in Chinese] | |
党宏忠, 张劲松, 赵雨森. 应用热扩散技术对柠条锦鸡儿主根液流速率的研究. 林业科学, 2010, 46 (3): 29- 36. | |
Dang H Z, Zhang J S, Zhao Y S. Application of the thermal dissipation probe technique in studying the sap flow in taproot of Caragana korshinskii . Scientia Silvae Sinicae, 2010, 46 (3): 29- 36. | |
傅伯杰, 吕一河, 高光耀. 中国主要陆地生态系统服务与生态安全研究的重要进展. 自然杂志, 2012, 34 (5): 261- 272. | |
Fu B J, Lü Y H, Gao G Y. Major research progresses on the ecosystem service and ecological safety of main terrestrial ecosystems in China. Chinese Journal of Nature, 2012, 34 (5): 261- 272. | |
傅伯杰, 周国逸, 白永飞, 等. 中国主要陆地生态系统服务功能与生态安全. 地球科学进展, 2009, 24 (6): 571- 576. | |
Fu B J, Zhou G Y, Bai Y F, et al. The main terrestrial ecosystem services and ecological security in China. Advances in Earth Science, 2009, 24 (6): 571- 576. | |
郭晓峰. 辽西北地区大果榆的有性繁育与生态应用. 特种经济植物, 2022, 25 (3): 93- 94. | |
Guo X F. Sexual breeding and ecological application of Ulmus macrophylla in northwestern Liaoning . Special Economic Animals and Plants, 2022, 25 (3): 93- 94. | |
韩 辉, 张学利, 党宏忠, 等. 科尔沁沙地南缘樟子松林蒸腾强度的年际变化及与降水、地下水位间的关系. 林业科学, 2020, 56 (11): 31- 40. | |
Han H, Zhang X L, Dang H Z, et al. Inter-annual variation of transpiration intensity of Pinus sylvestrisvar. mongolicastand on the southern margin of Horqin Sandy Land and its relationship with precipitation and groundwater level . Scientia Silvae Sinicae, 2020, 56 (11): 31- 40. | |
孔 喆, 陈胜楠, 律 江, 等. 欧美杨单株液流昼夜组成及其影响因素分析. 林业科学, 2020, 56 (3): 8- 20.
doi: 10.11707/j.1001-7488.20200302 |
|
Kong Z, Chen S N, Lü J, et al. Characteristics of Populus euramericana sap flow over day and night and its influencing factors . Scientia Silvae Sinicae, 2020, 56 (3): 8- 20.
doi: 10.11707/j.1001-7488.20200302 |
|
李润东, 田文东, 于海群, 等. 基于数字影像的北京松山森林物候模拟及其与气象因子的关系. 林业科学, 2022, 58 (1): 89- 97.
doi: 10.11707/j.1001-7488.20220110 |
|
Li R D, Tian W D, Yu H Q, et al. Forest phenology estimation and its relationships with corresponding meteorological factors based on digital images in Songshan, Beijing, China. Scientia Silvae Sinicae, 2022, 58 (1): 89- 97.
doi: 10.11707/j.1001-7488.20220110 |
|
刘效东, 张卫强, 冯英杰, 等. 森林生态系统水源涵养功能研究进展与展望. 生态学杂志, 2022, 41 (4): 784- 791. | |
Liu X D, Zhang W Q, Feng Y J, et al. Research water conservation function of forest ecosystem: progress and prospect. Chinese Journal of Ecology, 2022, 41 (4): 784- 791. | |
马长明, 张含含, 韩 煜, 等. Granier原始公式测算107杨树干液流通量密度的误差及校正公式. 林业科学, 2021, 57 (3): 161- 169. | |
Ma C M, Zhang H H, Han Y, et al. Error and correction formula of Granier's Original Formula to calculate the stem sap flux density of clone 107 Poplar. Scientia Silvae Sinicae, 2021, 57 (3): 161- 169. | |
马玉洁, 李春友, 武鹏飞, 等. 基于实测白榆蒸腾速率校正计算液流速率的Granier原始公式. 林业科学, 2020, 56 (6): 179- 185. | |
Ma Y J, Li C Y, Wu P F, et al. Correction of Granier's original formula coefficient for calculating sap flow based on the measured transpiration rate of Ulmus pumila . Scientia Silvae Sinicae, 2020, 56 (6): 179- 185. | |
夏江宝, 张淑勇, 朱丽平, 等. 2014. 贝壳堤岛酸枣树干液流及光合参数对土壤水分的响应特征. 林业科学, 50(10): 24−32. | |
Xia J B, Zhang S Y, Zhu L P, et al. 2014. Response characteristics of stem sap flow and leaf photosynthesis of Ziziphus jujuba var. spinosus in response to soil moisture in Shell Ridge Island. Scientia Silvae Sinicae, 50(10): 24−32.[in Chinese] | |
辛福梅, 闫小莉, 张长耀, 等. 西藏拉萨河谷区藏川杨和北京杨树干液流特征及其对环境因子的响应. 林业科学, 2019, 55 (2): 22- 32.
doi: 10.11707/j.1001-7488.20190203 |
|
Xin F M, Yan X L, Zhang C Y, et al. Characteristics of stem sap flow of two poplar species and their responses to environmental factors in Lhasa River Valley of Tibet. Scientia Silvae Sinicae, 2019, 55 (2): 22- 32.
doi: 10.11707/j.1001-7488.20190203 |
|
杨永强, 赵西平, 郭平平, 等. 大果榆全树木材解剖特征及纤维形态的研究. 西部林业科学, 2022, 51 (3): 74- 80. | |
Yang Y Q, Zhao X P, Guo P P, et al. Wood anatomical characteristics and fiber morphology ofUlmus macrocarpa . Journal of West China Forestry Science, 2022, 51 (3): 74- 80. | |
张毓涛, 李吉玫, 李 翔, 等. 新疆乌拉泊库区主要乔木树种树干液流对比研究. 福建林学院学报, 2017, 30 (3): 246- 251.
doi: 10.13324/j.cnki.jfcf.2010.03.016 |
|
Zhang M T, Li J M, Li X, et al. Sap flow dynamics of the major tree species and its relationship with meteorologic factors in Wulabo, Xinjiang. Journal of Fujian College of Forestry, 2017, 30 (3): 246- 251.
doi: 10.13324/j.cnki.jfcf.2010.03.016 |
|
Baldocchi D D, Wilson K B, Gu L. 2002. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broadleaved deciduous forest-an assessment with the biophysical model CANOAK. Tree Physiology, 22(15/16): 1065−1077. | |
Chang X X, Zhao W Z, He Z B. 2014. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology, 187: 14−21. | |
Chen L X, Zhang Z Q, Li Z D, et al. Biophysical control of whole tree transpiration under an urban environment in northern China. Journal of Hydrology, 2011, 402 (3): 388- 400. | |
Clearwater M J, Meinzer F C, Andrade J L, et al. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 1999, 19 (10): 681- 687.
doi: 10.1093/treephys/19.10.681 |
|
Du S, Wang Y L, Kume T, et al. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology, 2011, 151 (1): 1- 10.
doi: 10.1016/j.agrformet.2010.08.011 |
|
Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 1987, 3 (4): 309- 320.
doi: 10.1093/treephys/3.4.309 |
|
Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 2000, 100 (4): 291- 308.
doi: 10.1016/S0168-1923(99)00151-3 |
|
Granier A, Reichstein M, Bréda N, et al. 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143(1/2): 123–145. | |
Hayat M, Xiang J, Yan C H, et al. Environmental control on transpiration and its cooling effect of Ficus concinna in a subtropical city Shenzhen, southern China . Agricultural and Forest Meteorology, 2022, 312 (1): 108715. | |
Hayat M, Zha T S, Jia X, et al. 2020. A multiple-temporal scale analysis of biophysical control of sap flow in Salix psammophila growing in a semiarid shrubland ecosystem of northwest China. Agricultural and Forest Meteorology, 288−289(4), 107985. | |
Iqbal S, Zha T S, Jia X, et al. Interannual variation in sap flow response in three xeric shrub species to periodic drought. Agricultural and Forest Meteorology, 2021, 297 (4): 108276. | |
Jia X, Zha T S, Gong J N, et al. 2016. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228−229: 120−129. | |
Matheny A M, Bohrer G, Vogel C S, et al. Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest. Journal of Geophysical Research:Biogeosciences, 2014, 119 (2): 2292- 2311. | |
Norman J M, Campbell G S. 1998. An introduction to environmental biophysics, Second Edition. Springer. | |
Oki T, Kanae S. Global hydrological cycles and world water resources. Science, 2006, 313 (5790): 1068- 1072.
doi: 10.1126/science.1128845 |
|
Peel M, Finlayson B, McMahon T. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 2007, 11 (5): 1633- 1644.
doi: 10.5194/hess-11-1633-2007 |
|
Sun S, Meng P, Zhang J S, et al. Partitioning oak woodland evapotranspiration in the rocky mountainous area of north China was disturbed by foreign vapor, as estimated based on non-steady-state 18O isotopic composition . Agricultural and Forest Meteorology, 2014, 184, 36- 47.
doi: 10.1016/j.agrformet.2013.08.006 |
|
Tie Q, Hu H, Tian F, et al. 2017. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agricultural and Forest Meteorology, 240−241: 46−57. | |
Zha T S, Qian D, Jia X, et al. Soil moisture control of sap-flow response to biophysical factors in a desert-shrub species, Artemisia ordosica . Biogeosciences, 2017, 14 (19): 4533- 4544.
doi: 10.5194/bg-14-4533-2017 |
[1] | Jiaming Wan,Jiang Lü,Yun Shi,Hang Xu,Zhiqiang Zhang. Effects of Diffuse Radiation on the Gross Primary Productivity of a Poplar Plantation [J]. Scientia Silvae Sinicae, 2023, 59(5): 1-10. |
[2] | Zhiying Tang,Junhong Gao,Zanqing Zeng,Miaomiao Wang,Lianghua Qi. Stem Fluid Flow of Bamboo Plants: Methods, Characteristics, and Influencing Factors [J]. Scientia Silvae Sinicae, 2022, 58(9): 157-164. |
[3] | Lixuan Wang,Guang Yang,Jiaqi Gao,Xin Zheng,Zhaoguo Li,Yuetai Weng,Xueying Di,Hongzhou Yu. Changes in the Flammability of Post-Fire Aboveground Litter of Larix gmelinii [J]. Scientia Silvae Sinicae, 2022, 58(6): 110-121. |
[4] | Jianwen Hu,Qingcheng Wang. Feasibility of Sap Flow in Early Spring Used for Nutrition Diagnosis of Betula platyphylla Plantation [J]. Scientia Silvae Sinicae, 2022, 58(11): 174-180. |
[5] | Pengyu Zhao,Xue Bai,Pingmei Yan,Xiaodong Zhao,Xiaoying Wu,Baofeng Chai. Responses of Soil Bacterial Community Structure and Phenotype to Soil Heterogeneity in Larix principis-rupprechtii Forest [J]. Scientia Silvae Sinicae, 2021, 57(7): 101-110. |
[6] | Wenbo Li,Zhengang Lü,Xuanrui Huang,Zhidong Zhang. Predicting Spatial Distribution of Site Index for Larix principis-rupprechtii Plantations in the Northern Hebei Province [J]. Scientia Silvae Sinicae, 2021, 57(3): 79-89. |
[7] | Fanqiang Ma,Quanshui Guo,Aili Qin,Zunji Jian,Jiyong Huang,Zhongbing Wang,Quan Yang,Shiqiang Zhang. Survival and Growth of Reintroduced Thuja sutchuenensis Seedlings in Relation to Environmental Factors [J]. Scientia Silvae Sinicae, 2021, 57(11): 1-12. |
[8] | Moshun Chen,Zexin Jin,Shisheng Ke,Zilin Chen,Deyue Pan. Community Characteristics and Their Relations with Environmental Variables of Critically Endangered Species Carpinus tientaiensis [J]. Scientia Silvae Sinicae, 2020, 56(9): 1-11. |
[9] | Yujie Ma,Chunyou Li,Pengfei Wu,Changjun Yin,Changming Ma. Correction of Granier's Original Formula Coefficient for Calculating Sap Flow Based on the Measured Transpiration Rate of Ulmus pumila [J]. Scientia Silvae Sinicae, 2020, 56(6): 179-185. |
[10] | Qifan Wang,Jun Shen,Bin Zeng,Huiyu Wang,Tianyu Cao,Huajun Dong. VOCs and Odor Emission from Lacquer Veneer Particleboards [J]. Scientia Silvae Sinicae, 2020, 56(5): 130-142. |
[11] | Yulian Ren,Mei Lu,Qianbin Cao,Cong Li,Jun Feng,Zhisheng Wang. Response of Forest Soil Enzyme Activities to Elevation in Nangunhe Natural Reserve [J]. Scientia Silvae Sinicae, 2020, 56(4): 22-34. |
[12] | Zhe Kong,Shengnan Chen,Jiang Lü,Lixin Chen,Zhiqiang Zhang. Characteristics of Populus euramericana Sap Flow Over Day and Night and Its Influencing Factors [J]. Scientia Silvae Sinicae, 2020, 56(3): 8-20. |
[13] | Xinwei Feng,Zhiqiang Zhang,Hang Xu,Jiang Lü,Haiquan Zhang,Xiangxue Meng. Time-Lag Responses of Net Ecosystem Carbon Exchange to Environmental Factors in a Populus×euramericana Plantation [J]. Scientia Silvae Sinicae, 2020, 56(2): 12-23. |
[14] | Hui Han,Xueli Zhang,Hongzhong Dang,Guijun Xu,Xiao Zhang,Sitong Wang,Shuai Chen,Baixi Zhang. Inter-annual Variation of Transpiration Intensity of Pinus sylvestris var. mongolica Stand on the Southern Margin of Horqin Sandy Land and its Relationship with Precipitation and Groundwater Level [J]. Scientia Silvae Sinicae, 2020, 56(11): 31-40. |
[15] | Lei Zhang, Pengsen Sun, Shirong Liu. Growing-Season Transpiration of Typical Forests in Different Succession Stages in Subalpine Region of Western Sichuan, China [J]. Scientia Silvae Sinicae, 2020, 56(1): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||