欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (11): 150-159.doi: 10.11707/j.1001-7488.LYKX20250012

• 研究论文 • 上一篇    

基于深度学习的结构用锯材节子在线检测方法

纪敏1,高锐2,王晓欢1,*(),刁兴良1,韩佳锴1,赵扬1,王国富1,张伟1,*()   

  1. 1. 中国林业科学研究院木材工业研究所 北京 100091
    2. 福建省林业科学研究院 福州 350012
  • 收稿日期:2025-01-07 修回日期:2025-08-13 出版日期:2025-11-25 发布日期:2025-12-11
  • 通讯作者: 王晓欢,张伟 E-mail:wangxiaohuan@caf.ac.cn;wzhang@caf.ac.cn
  • 基金资助:
    国家重点研发计划项目(2024YFD2200700);福建省科技重大专项(2024HZ026011)。

Online Detecting Method of Structural Lumber Knot Based on Deep Learning

Min Ji1,Rui Gao2,Xiaohuan Wang1,*(),Xingliang Diao1,Jiakai Han1,Yang Zhao1,Guofu Wang1,Wei Zhang1,*()   

  1. 1. Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091
    2. Fujian Academy of Forestry Fuzhou 350012
  • Received:2025-01-07 Revised:2025-08-13 Online:2025-11-25 Published:2025-12-11
  • Contact: Xiaohuan Wang,Wei Zhang E-mail:wangxiaohuan@caf.ac.cn;wzhang@caf.ac.cn

摘要:

目的: 针对结构用锯材人工目测分等效率低、主观性强等问题,选取常用赤松结构用锯材,构建一种基于深度学习的节子在线检测方法,为提高结构用锯材分等的自动化与精度提供技术支撑。方法: 基于 YOLO 网络构建节子检测模型,引入高效层聚合网络(ELAN)以及结合 SIFT 特征的图像拼接、分割与融合方法,增强机器视觉缺陷检测系统在锯材分等及复杂生产线视觉任务中的适应能力。通过多尺度预测和损失函数最小化,抑制图像背景及噪声对缺陷检测的干扰,准确计算目标分类与定位损失,从而提高节子目标检测精度并优化模型在特定任务中的表现。结果: 工业现场应用结果表明,该系统对锯材表面节子缺陷的识别与检测精度达到90.97%,漏检率为9.03%,节子位置(XY)与尺寸(LW)平均检测精度分别为86.29%与85.95%,检测速度可达到 20~30 m·min?1,能够满足结构用锯材在加工生产线中的应用需求。结论: 深度学习方法适用于实际锯材检测任务,可有效降低人工检测的主观性,并提升检测的准确率和效率。机器视觉检测技术的引入,有望推动木材分等技术的创新与发展,提升木材加工行业的质量控制水平,进而促进木结构建筑行业整体技术能力的进步。

关键词: 赤松结构用锯材, 机器视觉节子检测平台, 深度学习, YOLO 训练模型, 高效层聚合网络

Abstract:

Objective: To address the low efficiency and strong subjectivity of manual visual grading for structural sawn timber, this study selected Pinus densiflora structural sawn timber and developed a deep-learning-based online knot detection method, providing technical support for improving the automation and accuracy of structural sawn timber grading. Method: Based on the YOLO network, a knot-detection model was built that incorporates the efficient layer aggregation network (ELAN) and an image stitching, segmentation, and fusion scheme guided by SIFT features, strengthening the adaptability of the machine-vision defect-detection system to sawn-timber grading and other complex on-line vision tasks. Multi-scale prediction and loss-function minimization suppress background clutter and noise, enabling accurate classification and localization losses and thus raising knot-detection accuracy while optimizing task-specific performance. Result: In the industrial production application site, the test results showed that the identification and defect detection accuracy of knots on the surface of lumber is 90.97%, with a missed detection rate of 9.03%. The average detection accuracy of knot defect location X and Y was 86.29%, the average detection accuracy of knot defect size L and W was 85.95%, and the detection speed could reach 20–30 m·min?1, which meets the practical application of wooden product processing line. Conclusion: In this study, the deep learning method is suitable for lumber detection in practical application, reducing the subjectivity of manual inspection and improving the accuracy and efficiency of inspection. Machine vision detection technique promotes the innovation and development of wood grading technology, improves the quality of wood processing industry, and improves the technical level of wood structure construction industry.

Key words: Pinus densiflora structural lumber, machine vision knot inspection platform, deep learning, YOLO training model, efficient layer aggregation network

中图分类号: