|
关淯尹, 王文财, 沈 彤, 等. 基于改进YOLOv5s模型的刨花板表面缺陷检测方法. 智能制造, 2024, 31 (5): 104- 112.
|
|
Guan Y, Wang W, Shen T, et al. Surface defect detection method of particleboard based on improved YOLOv5s model. Intelligent Manufacturing, 2024, 31 (5): 104- 112.
|
|
唐忠荣, 李素珍. 刨花板外观质量缺陷分析及对策. 林产工业, 2005, 42 (6): 26- 28.
|
|
Tang Z R, Li S Z. External defects of particleboard and their countermeasures. China Forest Products Industry, 2005, 42 (6): 26- 28.
|
|
王文财, 党亚光, 朱 翔, 等. 基于Lite-YOLOv5s模型的刨花板表面缺陷检测方法. 木材科学与技术, 2023, 37 (3): 58- 67.
|
|
Wang W, Dang Y, Zhu X, et al. Detecting method for particleboard surface defects based on the Lite-YOLOv5s model. Chinese Journal of Wood Science and Technology, 2023, 37 (3): 58- 67.
|
|
杨 龙, 毛顺国, 陆铜华, 等. 我国刨花板工业技术进步回顾与展望. 木材科学与技术, 2024, 38 (1): 1- 12.
|
|
Yang L, Mao S, Lu T et al. Review and outlook of technology development in China’s particleboard industry. Chinese Journal of Wood Science and Technology, 2024, 38 (1): 1- 12.
|
|
杨 渊. 机器视觉在刨花板表面缺陷检测中的应用现状与建议. 中国人造板, 2024, 31 (5): 33- 37.
|
|
Yang Y. Application of machine vision in particleboard surface defect detection: status and recommendations. China Wood-Based Panels, 2024, 31 (5): 33- 37.
|
|
由 佳, 胡生辉, 金 枝. 浅析我国人造板产业简况. 绿色中国, 2024, 21 (16): 56- 61.
|
|
You J, Hu S, Jin Z. A brief analysis of China’s artificial board industry. Green China, 2024, 21 (16): 56- 61.
|
|
查 健, 陈先中, 王文财, 等. 基于改进的YOLOv5s刨花板表面小目标缺陷检测算法. 计算机工程与应用, 2024, 60 (17): 158- 166.
|
|
Zha J, Chen X, Wang W, et al. Small defect detection algorithm of particle board surface based on improved YOLOv5s. Computer Engineering and Applications, 2024, 60 (17): 158- 166.
|
|
朱 豪, 周顺勇, 曾雅兰, 等. 基于改进YOLOv5s的木材表面缺陷检测模型. 木材科学与技术, 2023, 37 (2): 8- 15.
|
|
Zhu H, Zhou S, Zeng Y et al. Detection model of wood surface defects based on improved YOLOv5s. Chinese Journal of Wood Science and Technology, 2023, 37 (2): 8- 15.
|
|
Bany Muhammad M, Yeasin M. Eigen-CAM: visual explanations for deep convolutional neural networks. SN Computer Science, 2021, 2 (1): 47.
doi: 10.1007/s42979-021-00449-3
|
|
He K, Gkioxari G, Dollár P, et al. 2017. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, 2980–2988.
|
|
Hu W, Wang T, Wang Y, et al. LE–MSFE–DDNet: a defect detection network based on low-light enhancement and multi-scale feature extraction. The Visual Computer, 2022, 38 (11): 3731- 3745.
doi: 10.1007/s00371-021-02210-6
|
|
Jiao L, Zhang F, Liu F, et al. A survey of deep learning-based object detection. IEEE Access, 2019, 7, 128837- 128868.
doi: 10.1109/ACCESS.2019.2939201
|
|
Lin T Y, Goyal P, Girshick R, et al. 2017. Focal loss for dense object detection. 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, 2999–3007.
|
|
Liu W, Anguelov D, Erhan D, et al. 2016. SSD: single shot multibox detector. Computer Vision–ECCV 2016, 14th European Conference, Amsterdam, The Netherlands, Proceedings, Part I 14, Springer, 21−37.
|
|
Luo W, Li Y, Urtasun R, et al. Understanding the effective receptive field in deep convolutional neural networks. Advances in Neural Information Processing Systems, 2016, 29, 4898- 4906.
|
|
Lyu C, Zhang W, Huang H, et al. 2022. RTMDet: an empirical study of designing real-time object detectors. arXiv preprint arXiv, 2212.07784.
|
|
Mehta S, Rastegari M. 2021. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint arXiv: 2110.02178.
|
|
Peng C, Li X, Wang Y. TD-YOLOA: an efficient YOLO network with attention mechanism for tire defect detection. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1- 11.
|
|
Redmon J, Divvala S, Girshick R, et al. 2016. You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Barcelona, Spain, 779–788.
|
|
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
|
Sunkara R, Luo T. 2023. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects. Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 443–459.
|
|
Wang A, Chen H, Liu L, et al. YOLOv10: real-time end-to-end object detection. Advances in Neural Information Processing Systems, 2024, 37, 107984- 108011.
|
|
Zhang C, Wang C, Zhao L, et al. A method of particleboard surface defect detection and recognition based on deep learning. Wood Material Science & Engineering, 2025, 20 (1): 50- 61.
|
|
Zhang Y, Li X, Wang F, et al. 2021. A comprehensive review of one-stage networks for object detection. 2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Xi’an, Shaanxi, China, 1–6.
|
|
Zhao C, Shu X, Yan X, et al. RDD-YOLO: a modified YOLO for detection of steel surface defects. Measurement, 2023, 214, 112776.
doi: 10.1016/j.measurement.2023.112776
|
|
Zhao Y, Lv W, Xu S, et al. 2024. DETRs beat YOLOs on real-time object detection. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle WA, USA, 16965–16974.
|
|
Zhao Z, Yang X, Zhou Y, et al. Real-time detection of particleboard surface defects based on improved YOLOV5 target detection. Scientific Reports, 2021, 11 (1): 21777.
doi: 10.1038/s41598-021-01084-x
|
|
Zhou W, Li C, Ye Z, et al. An efficient tiny defect detection method for PCB with improved YOLO through a compression training strategy. IEEE Transactions on Instrumentation and Measurement, 2024, 73, 1- 14.
|
|
Zou Z, Chen K, Shi Z, et al. Object detection in 20 years: a survey. Proceedings of the IEEE, 2023, 111 (3): 257- 276.
doi: 10.1109/JPROC.2023.3238524
|