|
陈万志, 袁 航. 改进YOLOv8n的林业害虫检测方法. 北京林业大学学报, 2025, 47 (2): 119- 131.
doi: 10.12171/j.1000-1522.20240326
|
|
Chen W Z, Yuan H. Forestry pest detection method based on improved YOLOv8n. Journal of Beijing Forestry University, 2025, 47 (2): 119- 131.
doi: 10.12171/j.1000-1522.20240326
|
|
崔晓辰, 雷一东. 基于深度学习的林业害虫智能化检测方法研究进展. 世界林业研究, 2024, 37 (4): 53- 57.
|
|
Cui X C, Lei Y D. Research progress in deep-learning-based intelligent forest pest detection methods. World Forestry Research, 2024, 37 (4): 53- 57.
|
|
宫 妍, 翟俊杰, 王 凯, 等. 基于改进YOLOv7的玉米作物害虫检测研究. 计算机测量与控制, 2024, 32 (9): 58- 65.
|
|
Gong Y, Zhai J J, Wang K, et al. Study on corn crop pest detection based on improved YOLOv7. Computer Measurement & Control, 2024, 32 (9): 58- 65.
|
|
郭嘉璇, 王蓉芳, 南江华, 等. 融入全局相应归一化注意力机制的YOLOv5农作物害虫识别模型. 农业工程学报, 2024, 40 (8): 159- 170.
doi: 10.11975/j.issn.1002-6819.202310226
|
|
Guo J X, Wang R F, Nan J H, et al. YOLOv5 model integrated with GRN attention mechanism for insect pest recognition. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (8): 159- 170.
doi: 10.11975/j.issn.1002-6819.202310226
|
|
何 颖, 陈丁号, 彭 琳. 基于改进YOLOv5模型的经济林木虫害目标检测算法研究. 中国农机化学报, 2022, 43 (4): 106- 115.
|
|
He Y, Chen D H, Peng L. Research on objeet detection algorithm of economic forestry pests based on improved YOLOv5. Journal of Chinese Agricultural Mechanization, 2022, 43 (4): 106- 115.
|
|
匡敏球, 李 旭, 陈 熵, 等. 基于改进YOLOv8n的轻量化辣椒花目标检测方法. 农业工程学报, 2025, 41 (12): 198- 207.
doi: 10.11975/j.issn.1002-6819.202502114
|
|
Kuang M Q, Li X, Chen S, et al. Lightweight chili flower target detection method based on improved YOLOv8n. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2025, 41 (12): 198- 207.
doi: 10.11975/j.issn.1002-6819.202502114
|
|
孙海燕, 陈云博, 封丁惟, 等. 基于注意力模型和轻量化YOLOv4的林业害虫检测方法. 计算机应用, 2022, 42 (11): 3580- 3587.
doi: 10.11772/j.issn.1001-9081.2021122164
|
|
Sun H Y, Chen Y B, Feng D W, et al. Forest pest detection method based on attention model and lightweight YOLOv4. Journal of Computer Applications, 2022, 42 (11): 3580- 3587.
doi: 10.11772/j.issn.1001-9081.2021122164
|
|
孙丽萍, 谭少亨, 周宏威, 等. 基于YOLOv5的林业有害生物检测与识别. 森林工程, 2022, 38 (5): 104- 109.
doi: 10.3969/j.issn.1006-8023.2022.05.013
|
|
Sun L P, Tan S H, Zhou H W, et al. Forestry pests detection and identification based on YOLOv5. Forest Engineering, 2022, 38 (5): 104- 109.
doi: 10.3969/j.issn.1006-8023.2022.05.013
|
|
王俊岭, 王晨晨, 熊玉华. 基于YOLOv5l-Im的排水管道缺陷检测方法及效果分析. 科学技术与工程, 2024, 24 (18): 7833- 7842.
doi: 10.12404/j.issn.1671-1815.2304688
|
|
Wang J L, Wang C C, Xiong Y H. Detection and effectiveness of drainage pipeline defects based on YOLOv5l-Im. Science Technologr and Engineering, 2024, 24 (18): 7833- 7842.
doi: 10.12404/j.issn.1671-1815.2304688
|
|
王泰华, 郭亚州, 张家乐, 等. 基于改进YOLO v5s的水稻害虫识别研究. 农业机械学报, 2024, 55 (11): 39- 48.
doi: 10.6041/j.issn.1000-1298.2024.11.004
|
|
Wang T H, Guo Y Z, Zhang J L, et al. Research on rice pest identification based on improved YOLOv5s. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (11): 39- 48.
doi: 10.6041/j.issn.1000-1298.2024.11.004
|
|
王中天, 邹颖波, 吴昌霖, 等. 超越单一感知的农田害虫检测算法MRA-YOLOX. 计算机工程与应用, 2024, 60 (16): 206- 216.
doi: 10.3778/j.issn.1002-8331.2305-0318
|
|
Wang Z T, Zou Y B, Wu C L, et al. MRA-YOLOX for pest detection in farmland beyond single perception. Computer Engineering and Applications, 2024, 60 (16): 206- 216.
doi: 10.3778/j.issn.1002-8331.2305-0318
|
|
谢婉滢, 刘文萍, 王 晗. 无人机松林图像早期松材线虫病害检测. 林业科学, 2024, 60 (9): 124- 133.
doi: 10.11707/j.1001-7488.LYKX20220898
|
|
Xie W Y, Liu W P, Wang H. UAV images of pine forests for early detection of pine wood nematode infestation. Scientia Silvae Sinicae, 2024, 60 (9): 124- 133.
doi: 10.11707/j.1001-7488.LYKX20220898
|
|
杨红云, 肖小梅, 黄 琼, 等. 基于卷积神经网络和迁移学习的水稻害虫识别. 激光与光电子学进展, 2022, 59 (16): 333- 340.
|
|
Yang H Y, Xiao X M, Huang Q, et al. Rice pest identification based on convolutional neural network and transfer learning. Progress in Laser and Optoelectronics, 2022, 59 (16): 333- 340.
|
|
张长春, 李大方, 张军国. 基于Wasserstein 距离和相关对齐迁移学习的野生动物图像识别方法. 林业科学, 2024, 60 (8): 25- 32.
doi: 10.11707/j.1001-7488.LYKX20230399
|
|
Zhang C C, Li D F, Zhang J G. Wildlife images recognition method based on Wasserstein distance and correlation alignment transfer learning. Scient ia Silvae Sinicae, 2024, 60 (8): 25- 32.
doi: 10.11707/j.1001-7488.LYKX20230399
|
|
周志飞, 李 华, 冯毅雄, 等. 轻量化深度卷积神经网络设计研究进展. 计算机工程与应用, 2024, 60 (22): 1- 17.
doi: 10.3778/j.issn.1002-8331.2404-0372
|
|
Zhou Z F, Li H, Feng Y X, et al. Research progress on designing lightweight deep convolutional neural networks. Computer Engineering and Applications, 2024, 60 (22): 1- 17.
doi: 10.3778/j.issn.1002-8331.2404-0372
|
|
Chu J, Li Y, Feng H, et al. Research on multi-scale pest detection and identification method in granary based on improved YOLOv5. Agriculture, 2023, 13 (2): 364.
doi: 10.3390/agriculture13020364
|
|
He K, Zhang X, Ren S, et al. 2016. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 770−778.
|
|
Hou Q, Zhou D, Feng J. 2021. Coordinate attention for efficient mobile network design. IEEE Conference on Computer Vision and Pattern Recognition, 13708−13717.
|
|
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, 1234−1256.
|
|
Wang J, Li Y, Feng H, et al. Common pests image recognition based on deep convolutional neural network. Computers and Electronics in Agriculture, 2020, 179, 105834.
doi: 10.1016/j.compag.2020.105834
|
|
Yulita I, Prabuwono A, Ardiansyah F, et al. Pest detection in agricultural farms using squeezeNet and multi-layer perceptron model. International Journal of Advanced Computer Science and Applications, 2024, 15 (6): 802- 808.
|
|
Zhang Y, Ren W, Zhang Z, et al. 2022. Focal and efficient IOU loss for accurate bounding box regression. IEEE Conference Computer Vision and Pattern Recognition, 247−256.
|