林业科学 ›› 2020, Vol. 56 ›› Issue (8): 141-147.doi: 10.11707/j.1001-7488.20200816
王东1,2,林兰英1,*,傅峰1
收稿日期:
2018-04-25
出版日期:
2020-08-25
发布日期:
2020-09-15
通讯作者:
林兰英
基金资助:
Dong Wang1,2,Lanying Lin1,*,Feng Fu1
Received:
2018-04-25
Online:
2020-08-25
Published:
2020-09-15
Contact:
Lanying Lin
摘要:
木材多尺度结构主要包括纳米级高分子结构、微米级细胞壁多层结构和毫米级生长轮结构。纳米级高分子结构中三大素(纤维素、半纤维素和木质素)性质各异,微米级细胞壁多层结构中细胞壁各层三大素含量和微纤丝角不同,毫米级生长轮结构中细胞类型、大小和排列方向存在差异,这些结构差异均会导致多尺度结构单元之间的力学性质各异。木材破坏过程主要包括初始裂纹萌生和裂纹扩展,裂纹萌生和扩展主要由木材不同尺度单元间结构和力学性质的差异以及木材内部缺陷的不规则演化决定。本研究综述木材不同尺度单元间的结构和力学性质差异,并分析结构差异对木材破坏的影响。同时,提出今后有关木材多尺度结构差异对其破坏影响研究的几点建议:1)深入解译木材微纳结构的性质差异,研究木材三大素的排列取向规律以及木材不同化学组分对外部载荷的响应差异,揭示壁层内三大素的变形机制;研究细胞壁各层化学组分分布以及微纤丝取向不同导致的力学性能差异,分析外载荷作用下各壁层之间存在的应力传递规律;2)研究不同载荷作用下木材生长轮结构和细胞壁结构的裂纹萌生和扩展规律,精准定位木材破坏过程中不同尺度结构的裂纹萌生位置,区分裂纹在不同木材组织内部扩展时破坏断面的细胞破坏模式;3)借助有限元分析等理论方法,研究木材不同尺度单元间结构差异对木材生长轮结构和细胞壁结构上应力分布规律和应力集中位置的影响,揭示木材多尺度结构差异对木材破坏的影响机制。
中图分类号:
王东,林兰英,傅峰. 木材多尺度结构差异对其破坏影响的研究进展[J]. 林业科学, 2020, 56(8): 141-147.
Dong Wang,Lanying Lin,Feng Fu. The Effects of Multiscale Structure Differences on Wood Fracture—A Review[J]. Scientia Silvae Sinicae, 2020, 56(8): 141-147.
表1
细胞壁三大素的力学性质(含水率12%)①"
木质素Lignin | 半纤维素Hemicellulose | 纤维素Cellulose | ||||||||||||
弹性模量 Elastic modulus/ GPa | 泊松比 Poisson’s ratio | 弹性模量 Elastic modulus/GPa | 剪切模量 Shear modulus/ GPa | 泊松比 Poisson’s ratio | 弹性模量 Elastic modulus/ GPa | 剪切模量 Shear modulus/ GPa | 泊松比 Poisson’s ratio | |||||||
数值Values | 2 | 0.3 | 7.0 | 3.5 | 1.8 | 0.2 | 0.4 | 138 | 27.2 | 4.4 | 0.24 | 0.48 | ||
方法Methods | E | E | E | P | P | P | P | E | M | M | P | P | ||
参考文献 References |
巩翠芝, 刘一星, 崔永志, 等. 利用环境扫描电子显微镜原位监测木材的断裂过程. 东北林业大学学报, 2007. 35 (6): 7- 9. | |
Gong C Z , Liu Y X , Cui Y Z , et al. Detection of the process of wood fracture in situ test by environmental scanning electron microscope. Journal of Northeast Forestry University, 2007. 35 (6): 7- 9. | |
刘兆婷. 2008.木材结构分级多孔氧化物制备、表征及其功能特性研究.上海:上海交通大学博士学位论文. | |
Liu Z T. 2008. Synthesis, characterization and properties of hierarchical porous oxides derived from wood templates. Shanghai: PhD thesis of Shanghai Jiaotong University.[in Chinese] | |
任海青, 江泽慧, 邵卓平. 人工林杉木、马尾松木材的断裂韧性. 木材工业, 2001. 15 (1): 13- 14, 20. | |
Ren H Q , Jiang Z H , Shao Z P . Fracture toughness of plantation timber of Chinese fir and masson pine. China Wood Industry, 2001. 15 (1): 13- 14, 20. | |
任宁. 2007.木材微观构造对受载断裂的影响方式研究.哈尔滨:东北林业大学硕士学位论文. | |
Ren N. 2007. The research of on the influence of wood microstructure to fracture. Harbin: MS thesis of Northeast Forestry University.[in Chinese] | |
邵卓平. 2012.植物材料(木、竹)断裂力学.北京:科学出版社. | |
Shao Z P. 2012. Plant material (wood, bamboo) fracture mechanics. Beijing: Science Press.[in Chinese] | |
邵亚丽. 2012.落叶松木材管胞微力学性质变异性研究.呼和浩特:内蒙古农业大学硕士学位论文. | |
Shao Y L. 2012. the variability of micromechanics properties of tracheids of Larix olgensis plantation. Huhhot: MS thesis of Inner Mongolia Agricultural University.[in Chinese] | |
沈观林, 胡更开, 刘斌. 复合材料力学. 北京: 清华大学出版社. 2013. | |
Shen G L , Hu G K , Liu B . Mechanics of composite materials. Beijing: Tsinghua University Press. 2013. | |
张双燕. 2011.化学成分对木材细胞壁力学性能影响的研究.北京:中国林业科学研究院博士学位论文. | |
Zhang S Y. 2011. Chemical composites effect on mechanical properties of wood cell wall. Beijing: PhD thesis of Chinese Academy of Forestry.[in Chinese] | |
Abe H , Ohtani J , Fukazawa K . FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Journal, 1991. 12 (4): 431- 438. | |
Åkerholm M , Salmén L . The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung, 2003. 57 (5): 459- 465.
doi: 10.1515/HF.2003.069 |
|
Åkerholm M , Salmén L . Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer, 2001. 42 (3): 963- 969. | |
Atalla R H , Agarwal U P . Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science, 1985. 227 (4687): 636- 638. | |
Atalla R H , Hackney J M , Uhlin I , et al. Hemicelluloses as structure regulators in the aggregation of native cellulose. International Journal of Biological Macromolecules, 1993. 15 (2): 109- 112.
doi: 10.1016/0141-8130(93)90007-9 |
|
Awano T , Takabe K , Fujita M . Xylan deposition on secondary wall of Fagus crenata fiber. Protoplasma, 2002. 219 (1/2): 106- 115. | |
Barber N F , Meylan B A . The anisotropic shrinkage of wood. A theoretical model. Holzforschung, 1964. 18 (5): 146- 156. | |
Barber N F . A theoretical model of shrinking wood. Holzforschung, 1968. 22 (4): 97- 103.
doi: 10.1515/hfsg.1968.22.4.97 |
|
Bardage S , Donaldson L , Tokoh C , et al. Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nordic Pulp and Paper Research Journal, 2004. 19 (4): 448- 482. | |
Barnett J R , Bonham V A . Cellulose microfibril angle in the cell wall of wood fibres. Biological Reviews, 2004. 79 (2): 461- 472. | |
Bergander A , Salmén L . Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science, 2002. 37 (1): 151- 156. | |
Bertaud F , Holmbom B . Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Science and Technology, 2004. 38 (4): 245- 256. | |
Boyd J D. 1982. An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on strength. New Perspectives in Wood Anatomy, Springer Netherlands, 171-222. | |
Brändström J , Bardage S L , Daniel G , et al. The structural organization of the S1 cell wall layer of Norway spruce tracheid. IAWA Journal, 2003. 24 (1): 27- 40. | |
Cave I D . Modelling moisture-related mechanical properties of wood part Ⅰ:properties of the wood constituent. Wood Science and Technology, 1978. 12 (1): 75- 86. | |
Cousins W J . Young's modulus of hemicellulose as related to moisture content. Wood Science and Technology, 1978. 12 (3): 161- 167. | |
Cramer S , Kretschmann D , Lakes R , et al. Earlywood and latewood elastic properties in loblolly pine. Holzforschung, 2005. 59 (5): 531- 538. | |
Davies G W . Microscopic observations of wood fracture. Holzforschung, 1968. 22 (6): 177- 180. | |
Donaldson L , Xu P . Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees, 2005. 19 (6): 644- 653. | |
Duchesne I , Daniel G . Changes in surface ultrastructure of Norway spruce fibres during kraft pulping-visualisation by field emission-SEM. Nordic Pulp and Paper Research Journal, 2000. 15 (1): 54- 61.
doi: 10.3183/npprj-2000-15-01-p054-061 |
|
Easterling K E , Harrysson R , Gibson L J , et al. On the mechanics of balsa and other woods//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences. The Royal Society, 1982. 383 (1784): 31- 41. | |
Farruggia F , Perré P . Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce. Wood Science and Technology, 2000. 34 (2): 65- 82.
doi: 10.1007/s002260000034 |
|
Fahlén J , Salmén L . Cross-sectional structure of the secondary wall of wood fibers as affected by processing. Journal of Materials Science, 2003. 38 (1): 119- 126. | |
Gibson E J . Wood:a natural fibre reinforced composite. Metals and Materials, 1992. 8 (6): 333- 336. | |
Gibson L J, Ashby M F. 1999. The mechanics of honeycombs//Cellular solids: structure and properties. Cambridge University Press. | |
Gierlinger N , Schwanninger M , Reinecke A , et al. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules, 2006. 7 (7): 2077- 2081.
doi: 10.1021/bm060236g |
|
Harada H, Cote W A. 1985. Structure of wood. Biosynthesis and Biodegradation of Wood Components, 1-42. | |
Harrington J J , Astley R J , Booker R . Modelling the elastic properties of softwood. Holz als Roh-und Werkstoff, 1998. 56 (1): 37- 41. | |
Hofstetter K , Hellmich C , Eberhardsteiner J . Development and experimental validation of a continuum micromechanics model for the elasticity of wood. European Journal of Mechanics-A/Solids, 2005. 24 (6): 1030- 1053.
doi: 10.1016/j.euromechsol.2005.05.006 |
|
Li X , Zhou Y , Yan Y , et al. A single cell model for pretreatment of wood by microwave explosion. Holzforschung, 2010. 64 (5): 633- 637. | |
Ma Q , Rudolph V . Dimensional change behavior of Caribbean pine using an environmental scanning electron microscope. Drying Technology, 2006. 24 (11): 1397- 1403.
doi: 10.1080/07373930600952743 |
|
Mark R E. 1967. Cell wall mechanics of tracheids. New Haven: Yale University Press. | |
Mishnaevsky L , Qing H . Micromechanical modelling of mechanical behaviour and strength of wood:state-of-the-art review. Computational Materials Science, 2008. 44 (2): 363- 370. | |
Mott L. 1995. Micromechanical properties and fracture mechanisms of single wood pulp fibers. Forest Resources, University of Maine. | |
Muzamal, M, Gamstedt E K, Rasmuson A. 2017. Mechanistic study of microstructural deformation and stress in steam-exploded softwood. Wood Science and Technology. | |
Nishino T , Takano K , Nakamae K . Elastic modulus of the crystalline regions of cellulose polymorphs. Journal of Polymer Science Part B:Polymer Physics, 1995. 33 (11): 1647- 1651.
doi: 10.1002/polb.1995.090331110 |
|
Qing H , Mishnaevsky L . 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mechanics of Materials, 2009. 41 (9): 1034- 1049. | |
Qing H , Mishnaevsky L . 3D multiscale micromechanical model of wood:From annual rings to microfibrils. International Journal of Solids and Structures, 2010. 47 (9): 1253- 1267.
doi: 10.1016/j.ijsolstr.2010.01.014 |
|
Salmén L , Burgert I . Cell wall features with regard to mechanical performance. A review COST Action E35 2004-2008:Wood machining-micromechanics and fracture. Holzforschung, 2009. 63 (2): 121- 129. | |
Salmén L . Micromechanical understanding of the cell-wall structure. Comptes Rendus Biologies, 2004. 327 (9): 873- 880. | |
Salmén L , Bergström E . Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose, 2009. 16 (6): 975- 982. | |
Salmén L , Olsson A M , Stevanic J , et al. Structural organisation of the wood polymers in the wood fibre structure. BioResources, 2011. 7 (1): 521- 532. | |
Stevanic J S , Salmén L . Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung, 2009. 63 (5): 497- 503. | |
Terashima N, Fukushima K, He L F, et al. 1993. Comprehensive model of the lignified plant cell wall. Forage Cell Wall Structure and Digestibility, 247-270. | |
Terashima N. 1989. An improved radiotracer method for studying formation and structure of lignin//Lewis N G, Paice M G. Plant cell wall polymers: biogenesis and biodegradation. American Chemical Society, 148-159. | |
Wang N , Liu W , Peng Y . Gradual transition zone between cell wall layers and its influence on wood elastic modulus. Journal of Materials Science, 2013. 48 (14): 5071- 5084.
doi: 10.1007/s10853-013-7295-8 |
|
Wang N , Liu W , Lai J . An attempt to model the influence of gradual transition between cell wall layers on cell wall hygroelastic properties. Journal of Materials Science, 2014. 49 (5): 1984- 1993.
doi: 10.1007/s10853-013-7885-5 |
|
Watanabe U , Norimoto M , Ohgama T , et al. Tangential young modulus of coniferous early wood investigated using cell models. Holzforschung, 1999. 53 (2): 209- 214.
doi: 10.1515/HF.1999.035 |
|
Watanabe U , Norimoto M , Morooka T . Cell wall thickness and tangential Young's modulus in coniferous early wood. Journal of Wood Science, 2000. 46 (2): 109- 114.
doi: 10.1007/BF00777356 |
|
Yamamoto H . Role of the gelatinous layer on the origin of the physical properties of the tension wood. Journal of Wood Science, 2004. 50 (3): 197- 208.
doi: 10.1007/s10086-003-0556-4 |
|
Yamamoto H , Abe K , Arakawa Y , et al. Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. Journal of Wood Science, 2005. 51 (3): 222- 233.
doi: 10.1007/s10086-004-0639-x |
|
Zink A G , Pelikane P J , Shuler C E . Ultrastructural analysis of softwood fracture surfaces. Wood Science and Technology, 1994. 28 (5): 329- 338. |
[1] | 王朝晖,吕洋波,葛蓓清,张忠利,苏冠男,田昭鹏. 日本柳杉木构件内嵌钢填板销连接横纹承载性能[J]. 林业科学, 2020, 56(7): 123-134. |
[2] | 董明锐,贾世芳,刘静怡,林贤铣,薛倩雯,孙伟圣. 穿孔倾斜角度对3D打印仿生木材吸声结构的吸声性能影响[J]. 林业科学, 2020, 56(5): 113-117. |
[3] | 党宏忠, 冯金超, 韩辉. 沙地樟子松边材液流速率的方位差异特征[J]. 林业科学, 2020, 56(1): 29-37. |
[4] | 滕启城,王菲彬,阙泽利,曾楠. 圆钢钉和自攻螺钉钉入角度对规格材握钉力性能的影响[J]. 林业科学, 2020, 56(1): 154-161. |
[5] | 邓丽萍, 周贤武, 吕建雄, 王玉荣, 任海青, 赵荣军. 枝节木材结构与性能研究进展[J]. 林业科学, 2019, 55(9): 149-156. |
[6] | 夏永红, 沈文星, 李存芳. 木材加工产业集聚对劳动生产率影响的空间效应分解——基于1998—2016年省际空间面板数据的实证研究[J]. 林业科学, 2019, 55(9): 157-165. |
[7] | 王文杰, 杜红居, 肖路, 张建宇, 仲召亮, 周伟, 张波, 王洪元. 凉水自然保护区3种森林类型的植物组成和林分结构特征[J]. 林业科学, 2019, 55(9): 166-176. |
[8] | 沈晓双, 邹献武, 李改云, 王小青, 刘君良. 糠醇单体与预聚体混合物改性杨木[J]. 林业科学, 2019, 55(9): 197-204. |
[9] | 高鑫, 周凡, 周永东. 高温热处理木材吸湿特性[J]. 林业科学, 2019, 55(7): 119-127. |
[10] | 王新洲, 谢序勤, 王思群, 李延军, 梁星宇. 基于纳米压痕技术的木材胶合界面力学行为[J]. 林业科学, 2019, 55(7): 128-136. |
[11] | 王军, 王宇光, 杨锦玲, 李薇, 董文化, 梅文莉, 戴好富. 2种白木香所产沉香的木材组织构造和化学成分比较[J]. 林业科学, 2019, 55(7): 146-154. |
[12] | 周彬, 雷凤瑶, 虞虎, 张亦弛. 四明山国家森林公园游客游憩动机[J]. 林业科学, 2019, 55(5): 163-168. |
[13] | 李伟光, 张占宽. 微坑型微织构硬质合金表面对木材摩擦特性的影响[J]. 林业科学, 2019, 55(4): 136-143. |
[14] | 高鑫, 周凡, 庄寿增, 周永东. 纤维饱和点概念的演变、测试方法及其应用[J]. 林业科学, 2019, 55(3): 149-159. |
[15] | 黄仁, 张韵, 张启香, 王正加, 夏国华, 黄坚钦, 胡渊渊. 异源授粉山核桃果皮光合能力差异的转录组分析[J]. 林业科学, 2019, 55(1): 128-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||