林业科学 ›› 2025, Vol. 61 ›› Issue (10): 74-86.doi: 10.11707/j.1001-7488.LYKX20240520
• 研究论文 • 上一篇
马茹月1,2,王瑞福3,李鑫豪1,2,高永龙4,苏同3,魏晓帅1,2,田赟1,2,*(
),刘鹏1,2,查天山1,2
收稿日期:2024-09-05
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
田赟
E-mail:tianyun@bjfu.edu.cn
基金资助:
Ruyue Ma1,2,Ruifu Wang3,Xinhao Li1,2,Yonglong Gao4,Tong Su3,Xiaoshuai Wei1,2,Yun Tian1,2,*(
),Peng Liu1,2,Tianshan Zha1,2
Received:2024-09-05
Online:2025-10-25
Published:2025-11-05
Contact:
Yun Tian
E-mail:tianyun@bjfu.edu.cn
摘要:
目的: 量化温带天然落叶阔叶林生态系统净碳交换量,探究净碳交换在日和季节尺度上对环境的响应,为温带天然落叶阔叶林生态系统碳循环模型构建和精准估算提供科学依据。方法: 以北京怀柔区喇叭沟门典型白桦?山杨天然落叶阔叶林生态系统为研究对象,采用涡度相关法测定该生态系统净碳交换量和相关环境因子,基于小波分析等方法定量分析日和季节尺度生态系统净碳交换量与环境因子的时滞关系及其主要影响因子。结果: 1) 北京喇叭沟门白桦?山杨天然落叶阔叶林生态系统2022年生态系统总生产力、生态系统呼吸量和生态系统净碳交换量分别为1 330、930和?400 g·m?2a?1。2) 在日尺度上,生态系统呼吸量的主要影响因子为空气温度,时滞时间为2.82 h,生态系统总生产力和生态系统净碳交换量主要受光合有效辐射影响,且与光合有效辐射同步变化,光合有效辐射主要通过生态系统总生产力影响生态系统净碳交换量。3) 在季节尺度上,光合有效辐射是生态系统净碳交换量的主要影响因子,时滞时间为14.2天,虽然降雨量是影响生态系统呼吸量和生态系统总生产力变化的主要因子,但由于生态系统呼吸量和生态系统总生产力对降雨量响应的一致性,相互抵消后使得降雨量对生态系统净碳交换量的影响较小。结论: 因深山易受云雾遮挡,相较空气温度,白桦?山杨天然落叶阔叶林生态系统净碳交换量在日和季节尺度上对光合有效辐射的响应更敏感,但其响应机制存在差异。
中图分类号:
马茹月,王瑞福,李鑫豪,高永龙,苏同,魏晓帅,田赟,刘鹏,查天山. 北京喇叭沟门天然落叶阔叶林生态系统净碳交换及其对主要环境因子的响应[J]. 林业科学, 2025, 61(10): 74-86.
Ruyue Ma,Ruifu Wang,Xinhao Li,Yonglong Gao,Tong Su,Xiaoshuai Wei,Yun Tian,Peng Liu,Tianshan Zha. Net Ecosystem Carbon Exchange and Its Response to Main Environmental Factors in a Natural Deciduous Broad-Leaved Forest Ecosystem in Labagoumen, Beijing[J]. Scientia Silvae Sinicae, 2025, 61(10): 74-86.
表1
监测站仪器设备信息"
| 监测系统 Monitoring system | 仪器名称 Name of instrument | 仪器型号Product type | 观测参数 Observation parameter | 安装高度Height of installation |
| 涡度相关系统 Eddy covariance system | 三维超声风速仪 Three-dimensional ultrasonic anemometer | GILL-WMP | 三维风速、风向和超声温度等 Three-dimensional wind speed, winddirection and ultrasonic temperature | 20 m |
| CO2/H2O分析仪 CO2/H2O analysis meter | LI-7500DS | CO2/H2O浓度 CO2/H2O concentration | 20 m | |
| 微气象观测系统 Micrometeorological observation system | 空气温湿度传感器 Temperature and humidity sensor | HMP155A | 空气温、湿度 Air temperature and air humidity | 20 m、1.5 m |
| 风速风向传感器 Wind speed and direction sensor | 034B | 风速、风向 Wind speed and direction | 20 m、1.5 m | |
| 降雨量传感器 Rain gauge | TE525 | 降雨量 Precipitation | 20 m、1.5 m | |
| 光合有效辐射传感器 Photosynthetically active radiation sensor | LI-190R | 光合有效辐射 Photosynthetically active radiation | 20 m、1.5 m | |
| 土壤水分和温度传感器 Soil moisture and temperature sensor | TEROS11 | 土壤水分、土壤温度 Soil moisture and temperature | ?10 cm |
表2
碳通量组分在日尺度和季节尺度上与各环境因子之间的滞后关系①"
| 时间尺度 Time scale | 碳通量组分 Carbon fluxes | 光合有效辐射 Photosynthetically active radiation | 空气温度 Air temperature | 土壤温度 Soil temperature | 降雨量 Precipitation | 土壤水分含量 Soil water content | 饱和水汽压差 Vapor pressure deficit |
| 日尺度 Daily scale | 生态系统净碳交换量 Net ecosystem carbon exchange | 0.16 (0.02) | 6.71 (6.40) | 6.43 (3.72) | — | — | 9.26 (4.60) |
| 生态系统总生产力 Gross ecosystem productivity | 0.12 (1.27) | 10.29 (12.07) | 8.63 (7.01) | — | — | 13.85 (20.34) | |
| 生态系统呼吸量 Ecosystem respiration | 13.41 (16.23) | 2.82 (4.86) | 20.96 (23.34) | — | — | 5.64 (8.31) | |
| 季节尺度 Seasonal scale | 生态系统净碳交换量 Net ecosystem carbon exchange | 14.24 (15.66) | — | — | — | 40.91 (36.57) | 19.85 (25.36) |
| 生态系统总生产力 Gross ecosystem productivity | 18.49 (16.51) | — | — | 16.83 (18.39) | — | 24.83 (30.96) | |
| 生态系统呼吸量 Ecosystem respiration | 15.92 (18.64) | — | — | 10.52 (9.26) | — | 40.31 (45.88) |
表3
研究区全年生态系统净碳交换量、生态系统总生产力、生态系统呼吸量与其他森林生态系统的比较①"
| 站点 Site | 气候类型 Climate type | 植被类型 Vegetation type | NEE | GEP | Re | 参考文献 Reference |
| 北京喇叭沟门 Labagoumen, Beijing | 温带大陆性季风气候 Temperate continental monsoon climate | 落叶阔叶林(混交林) Deciduous broad-leaved forest (mixed forest) | ?400 | 930 | ||
| 北京松山 Songshan, Beijing | 温带大陆性季风气候 Temperate continental monsoon climate | 落叶阔叶林(混交林) Deciduous broad-leaved forest (mixed forest) | ?111 | — | — | |
| 北京八达岭 Badaling, Beijing | 温带大陆性季风气候 Temperate continental monsoon climate | 针阔混交林 Coniferous and broad-leaved mixed forest | 256 | 694 | 950 | |
| 北京密云 Miyun, Beijing | 温带大陆性季风气候 Temperate continental monsoon climate | 针叶林(纯林) Coniferous forest (pure forest) | ?24 | 315 | 291 | |
| 黑龙江帽儿山 Maoershan, Heilongjiang | 温带湿润季风气候 Temperate humid monsoon climate | 针叶林(纯林) Coniferous forest (pure forest) | ?263 | 981 | 718 | |
| 美国密苏里州 Missouri, USA | 温带大陆性气候 Temperate continental climate | 落叶阔叶林(混交林) Deciduous broad-leaved forest (mixed forest) | ?479 | 646 | ||
| 日本北海道 Hokkaido, Japan | 温带季风气候 Temperate monsoon climate | 落叶阔叶林(混交林) Deciduous broad-leaved forest (mixed forest) | ?375 | — | — | |
| 澳大利亚新南威尔士州 New South Wales, Australia | 温带海洋性气候 Temperate maritime climate | 常绿阔叶林(纯林) Evergreen broad-leaved forest (pure forest) | ?584 | — | — | |
| 比利时 Belgium | 温带海洋性气候 Temperate maritime climate | 针阔混交林 Coniferous and broad-leaved mixed forest | ?112 | — | — | |
| 加拿大安大略省 Ontario, Canada | 温带大陆性气候 Temperate continental climate | 落叶阔叶林(纯林) Deciduous broad-leaved forest (pure forest) | ?177 | |||
| 重庆缙云山 Jinyun Mountains, Chongqing | 亚热带湿润季风气候 Subtropical humid monsoon climate | 针阔混交林 Coniferous and broad-leaved mixed forest | ?565 | |||
| 美国北卡罗莱纳州 North Carolina, USA | 亚热带湿润季风气候 Subtropical humid monsoon climate | 落叶阔叶林(混交林) Deciduous broad-leaved forest (mixed forest) | ?402 | — | — | |
| 湖南岳阳君山区 Junshan, Yueyang, Hunan | 亚热带湿润季风气候 Subtropical humid monsoon climate | 落叶阔叶林(纯林) Deciduous broad-leaved forest (pure forest) | ?579 | — | — | |
| 广西壮族自治区 Guangxi Zhuang Autonomous Region | 亚热带季风气候 Subtropical monsoon climate | 常绿落叶阔叶混交林 Evergreen deciduous broad-leaved mixed forest | ?121 | 209 | 330 | |
| 浙江安吉 Anji, Zhejiang | 亚热带季风气候 Subtropical monsoon climate | 常绿阔叶林(纯林) Evergreen broad-leaf forest (pure forest) | ?668 | 933 | ||
| 湖南会同 Huitong, Hunan | 中亚热带湿润季风气候 Central subtropical humid monsoon climate | 针叶林(纯林) Coniferous forest (pure forest) | ?255 | 958 | ||
| 浙江天目山 Tianmu Mountain, Zhejiang | 亚热带季风气候 Subtropical monsoon climate | 常绿落叶阔叶混交林 Evergreen deciduous broad-leaved mixed forest | ?738 | 931 |
| 方 昊, 马 蕴, 何建勇, 等. 2023年北京森林覆盖率将达到44.9%. 绿化与生活, 2023, (2): 4- 8. | |
| Fang H, Ma Y, He J Y, et al. The forest coverage rate in Beijing will reach 44.9% in 2023. Greenery and Life, 2023, (2): 4- 8. | |
| 冯鑫炜, 张志强, 许 行, 等. 欧美杨人工林生态系统净碳交换对环境因子响应的时滞. 林业科学, 2020, 56 (2): 12- 23. | |
| Feng X W, Zhang Z Q, Xu H, et al. Time lag in response of net carbon exchange to environmental factors in poplar plantation ecosystems. Scientia Silvae Sinicae, 2020, 56 (2): 12- 23. | |
| 贾 丹. 2010. 北京市喇叭沟门自然保护区自然资本评估. 北京: 北京林业大学. | |
| Jia D. 2010. Assessment of natural capital in Beijing Labagoumen Nature Reserve. Beijing: Beijing Forestry University. [in Chinese] | |
| 靳 川, 蒋 燕, 李鑫豪, 等. 毛乌素沙地油蒿光系统Ⅱ多时间尺度的环境响应特征. 农业工程学报, 2021, 37 (2): 152- 160. | |
| Jin C, Jiang Y, Li X H, et al. Multi-time scale property of environmental responses to photosystem II of Artemisia ordosica in Mu Us desert. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (2): 152- 160. | |
| 李润东, 范雅倩, 冯 沛, 等. 北京松山天然落叶阔叶林生态系统净碳交换特征及其影响因子. 应用生态学报, 2020, 31 (11): 3621- 3630. | |
| Li R D, Fan Y Q, Feng P, et al. Net carbon exchange characteristics and influencing factors of natural deciduous broad-leaved forest ecosystem in Songshan, Beijing. Chinese Journal of Applied Ecology, 2020, 31 (11): 3621- 3630. | |
|
李鑫豪, 田文东, 李润东, 等. 北京松山落叶阔叶林生态系统水热通量对环境因子的响应. 植物生态学报, 2021, 45 (11): 1191- 1202.
doi: 10.17521/cjpe.2021.0106 |
|
|
Li X H, Tian W D, Li R D, et al. Responses of water vapor and heat fluxes to environmental factors in a deciduous broad-leaved forest ecosystem in Beijing. Chinese Journal of Plant Ecology, 2021, 45 (11): 1191- 1202.
doi: 10.17521/cjpe.2021.0106 |
|
| 李鑫豪, 张德怀, 张赵森, 等. 北京密云油松人工林碳通量组分季节变化及其对环境因子的响应. 林业科学, 2023, 59 (7): 35- 44. | |
| Li X H, Zhang D H, Zhang Z S, et al. Seasonal variation of carbon flux components and their responses to environmental factors in Pinus tabuliformis plantation in Beijing. Scientia Silvae Sinicae, 2023, 59 (7): 35- 44. | |
| 李子涵, 罗维均, 杜 虎, 等. 喀斯特常绿落叶阔叶混交林旱季CO2通量特征及其影响因子. 地球与环境, 2020, 48 (5): 525- 536. | |
| Li Z H, Luo W J, Du H, et al. Characteristics of CO2 fluxes in dry season and their influencing factors in karst evergreen and deciduous broad-leaved mixed forest. Earth and Environment, 2020, 48 (5): 525- 536. | |
| 牛晓栋, 江 洪, 张金梦, 等. 浙江天目山老龄森林生态系统CO2通量特征. 应用生态学报, 2016, 27 (1): 1- 8. | |
| Niu X D, Jiang H, Zhang J M, et al. CO2 flux characteristics of aging forest ecosystem in Tianmu Mountain, Zhejiang. Chinese Journal of Applied Ecology, 2016, 27 (1): 1- 8. | |
| 齐建东, 谭新新. 长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟. 林业科学, 2022, 58 (2): 1- 12. | |
| Qi J D, Tan X X. Changes in net carbon exchange in Korean pine broad-leaved forest in Changbai Mountain and simulation based on temporal convolutional neural network. Scientia Silvae Sinicae, 2022, 58 (2): 1- 12. | |
| 邱 岭, 祖元刚, 王文杰, 等. 帽儿山地区落叶松人工林CO2通量特征及对林分碳收支的影响. 应用生态学报, 2011, 22 (1): 1- 8. | |
| Qiu L, Zu Y G, Wang W J, et al. CO2 flux characteristics of larch plantations in Maoershan area and their effects on stand carbon budget. Chinese Journal of Applied Ecology, 2011, 22 (1): 1- 8. | |
| 宋文馨. 2022. 风景区内乡村景观规划设计—以北京市喇叭沟门森林公园内管营村为例. 保定: 河北农业大学. | |
| Song W X. 2022. Rural landscape planning and design in scenic areas - a case study of Guanying village in Beijing Labagoumen Forest Park. Baoding: Hebei Agricultural University. [in Chinese] | |
| 孙 成, 江 洪, 周国模, 等. 我国亚热带毛竹林CO2通量的变异特征. 应用生态学报, 2013, 24 (10): 2717- 2724. | |
| Sun C, Jiang H, Zhou G M, et al. Variation characteristics of CO2 flux in subtropical moso bamboo forests in China. Chinese Journal of Applied Ecology, 2013, 24 (10): 2717- 2724. | |
| 唐 祥, 陈文婧, 李春义, 等. 北京八达岭林场人工林净碳交换及其环境影响因子. 应用生态学报, 2013, 24 (11): 3057- 3064. | |
| Tang X, Chen W J, Li C Y, et al. Net carbon exchange and environmental impact factors of plantations in Badaling Forest Farm, Beijing. Chinese Journal of Applied Ecology, 2013, 24 (11): 3057- 3064. | |
| 王萌萌, 张 弥, 王辉民, 等. 太阳辐射变化对千烟洲亚热带人工针叶林净CO2交换量的影响. 生态学杂志, 2015, 34 (2): 303- 311. | |
| Wang M M, Zhang M, Wang H M, et al. Effects of changes in solar radiation on net ecosystem exchange of carbon dioxide of planted subtropical coniferous forest in Qianyanzhou. Chinese Journal of Ecology, 2015, 34 (2): 303- 311. | |
| 王 倩, 王云琦, 马 超, 等. 缙云山针阔混交林碳通量变化特征及影响因子研究. 长江流域资源与环境, 2019, 28 (3): 565- 576. | |
| Wang Q, Wang Y Q, Ma C, et al. Study on carbon flux change characteristics and influencing factors of coniferous and broad-leaved mixed forest in Jinyun Mountain. Resources and Environment in the Yangtze Basin, 2019, 28 (3): 565- 576. | |
| 魏 远, 张旭东, 江泽平, 等. 2010. 湖南岳阳地区杨树人工林生态系统净碳交换季节动态研究. 林业科学研究, 23(5): 656-665. | |
| Wei Y, Zhang X D, Jiang Z P, et al. Seasonal dynamics of net carbon exchange in poplar plantation ecosystem in Yueyang, Hunan Province. Forest Research, 23(5): 656-665. [in Chinese] | |
| 徐同庆, 徐宜民, 孟 霖, 等. 攀西干热河谷烟田烤烟成熟初期水碳通量日间变化的非对称响应. 中国烟草学报, 2017, 23 (3): 72- 79. | |
| Xu T Q, Xu Y M, Meng L, et al. Asymmetric response character of diurnal variation of water and carbon fluxes at initial mature stage of flue-cured tobacco in Panxi dry and hot valley tobacco planting area. Acta Tabacaria Sinica, 2017, 23 (3): 72- 79. | |
| 晏德莉, 李双双, 延军平, 等. 汉江流域降水非均匀性变化特征分析. 武汉大学学报(理学版), 2020, 66 (4): 377- 385. | |
| Yan D L, Li S S, Yan J P, et al. Analysis of variation characteristics of Precipitation Heterogeneity in the Hanjiang River Basin. Journal of Wuhan University: Natural Science Edition, 2020, 66 (4): 377- 385. | |
| 药静宇, 王国印, 黄建平, 等. 黄土高原半干旱区净碳交换量的特征分析. 干旱气象, 2016, 34 (1): 88- 95. | |
| Yao J Y, Wang G Y, Huang J, et al. Characteristics of net carbon exchange over the semi-arid Loess Plateau in northwest China. Journal of Arid Meteorology, 2016, 34 (1): 88- 95. | |
| 张蒙静. 2022. 北京市喇叭沟门森林公园道路景观优化提升研究. 保定: 河北农业大学. | |
| Zhang M J. 2022. Study on optimization and enhancement of road landscape in Beijing Labagoumen Forest Park. Baoding: Hebei Agricultural University. [in Chinese] | |
| 赵仲辉, 张利平, 康文星, 等. 湖南会同杉木人工林生态系统CO2通量特征. 林业科学, 2011, 47 (11): 6- 12. | |
| Zhao Z H, Zhang L P, Kang W X, et al. CO2 flux characteristics of Chinese fir plantation ecosystem in Hunan Province. Scientia Silvae Sinicae, 2011, 47 (11): 6- 12. | |
| 周温存, 刘正佳, 王 坤, 等. 北方农牧交错区干旱特征变化及其对植被总初级生产力的影响. 地球信息科学学报, 2023, 25 (2): 421- 437. | |
| Zhou W C, Liu Z J, Wang K, et al. Spatio-temporal changes of drought features and their impacts on the gross primary production in farming-pastoral ecotone of northern China. Journal of Geo-information Science, 2023, 25 (2): 421- 437. | |
| 朱 牛, 王金牛, 王旭峰, 等. 三江并流核心区亚高山森林非生长季净生态系统CO2交换量及其影响因素. 生态学报, 2023, 43 (14): 5967- 5979. | |
| Zhu N, Wang J N, Wang X F, et al. Net ecosystem CO2 exchange and its influencing factorsin non-growing season at a sub-alpine forest in the core three parallel rivers region. Acta Ecologica Sinica, 2023, 43 (14): 5967- 5979. | |
|
Arnaud C, Andrew S K, Johan N, et al. Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agricultural and Forest Meteorology, 2003, 119 (3-4): 209- 227.
doi: 10.1016/S0168-1923(03)00120-5 |
|
| Baldocchi D, Chu H, Reichstein M. Inter-annual variability of net and gross ecosystem carbon fluxes: a review. Agricultural and Forest Meteorology, 2017, 249, 520- 533. | |
|
Baldocchi D. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 2008, 56 (1): 1- 26.
doi: 10.1071/BT07151 |
|
|
Bonan B G. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320 (5882): 1444- 1449.
doi: 10.1126/science.1155121 |
|
| Borchard N, Schirrmann M, Hebel C V, et al. Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany. Agriculture Ecosystems & Environment, 2015, 211 (12): 84- 93. | |
|
Cazelles B, Chavez M, Berteaux D, et al. Wavelet analysis of ecological time series. Oecologia, 2008, 156, 287- 304.
doi: 10.1007/s00442-008-0993-2 |
|
| Chen W N, Wang S, Wang J S, et al. Evidence for widespread thermal optimality of ecosystem respiration. Nature Ecology & Evolution, 2023, 7 (9): 1379- 1387. | |
| Chen Z, Yu G, Wang Q. Effects of climate and forest age on the ecosystem carbon exchange of afforestation. Journal of Forestry Research, 2020, 31 (8): 365- 374. | |
| Duffy K A, Schwalm C R, Arcus V L, et al. 2021. How close are we to the temperature tipping point of the terrestrial biosphere? Science Advances, 7(3): 2375−2548. | |
|
Dunn A L, Barford C C, Wofsy S C, et al. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to inter annual variability, and decadal trends. Global Change Biology, 2007, 13 (3): 577- 590.
doi: 10.1111/j.1365-2486.2006.01221.x |
|
|
Fang Y Y, Michalak A M. Atmospheric observations inform CO2 flux responses to enviroclimatic drivers. Global Biogeochemical Cycles, 2015, 29 (5): 555- 566.
doi: 10.1002/2014GB005034 |
|
| Gorsel V E, Berni J, Briggs P, et al. 2013. Primary and secondary effects of climate variability on net ecosystem carbon exchange in an evergreen Eucalyptus forest. Agricultural and Forest Meteorology, 182−183: 248−256. | |
|
Green J K, Seneviratne S I, Berg A M, et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565 (7740): 476- 479.
doi: 10.1038/s41586-018-0848-x |
|
| Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 2004, 11 (40): 561- 566. | |
|
Gushchina D, Tarasova M, Satosina E, et al. The response of daily carbon dioxide and water vapor fluxes to temperature and precipitation extremes in temperate and boreal forests. Climate, 2023, 11 (10): 206.
doi: 10.3390/cli11100206 |
|
| Hayek N M, Longo M, Wu J, et al. Carbon exchange in an Amazon forest: from hours to years. Biogeosciences, 2018, 15 (15): 1- 26. | |
|
Huntingford C, Cox P, Lenton T. Contrasting responses of a simple terrestrial ecosystem model to global change. Ecological Modelling, 2000, 134 (1): 41- 58.
doi: 10.1016/S0304-3800(00)00330-6 |
|
|
Jia X, Zha T S, Gong J, et al. Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agricultural and Forest Meteorology, 2018, 259, 250- 259.
doi: 10.1016/j.agrformet.2018.05.009 |
|
|
Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences Discussions, 2014, 11 (17): 4679- 4693.
doi: 10.5194/bg-11-4679-2014 |
|
|
José L, Danielle A W, Walid S. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology, 2021, 27 (9): 1704- 1720.
doi: 10.1111/gcb.15548 |
|
|
Knorr W, Prentice I C, House J I, et al. Long-term sensitivity of soil carbon turnover to warming. Nature, 2005, 433 (7023): 298- 301.
doi: 10.1038/nature03226 |
|
| Li C J, Fu B J, Wang S, et al. Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2021, 2 (12): 858- 873. | |
| Lin Z B, Zhang R D, Tang J, et al. Effects of high soil water content and temperature on soil respiration. Soil Science, 2010, 176 (3): 150- 155. | |
|
Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62 (2): 158- 175.
doi: 10.1016/S0034-4257(97)00089-8 |
|
|
Liu L B, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally. Nature Communications, 2020, 11 (1): 4892.
doi: 10.1038/s41467-020-18631-1 |
|
|
Liu P, Zha T S, Zhang F, et al. Environmental controls on carbon fluxes in an urban forest in the Megalopolis of Beijing, 2012—2020. Agricultural and Forest Meteorology, 2023, 333, 109412.
doi: 10.1016/j.agrformet.2023.109412 |
|
|
Lu M, Zhou X H, Yang Q, et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 2013, 94 (3): 726- 738.
doi: 10.1890/12-0279.1 |
|
|
Luyssaert S, Ciais P, Piao S L, et al. The European carbon balance. Part 3: forests. Global Change Biology, 2010, 16 (5): 1429- 1450.
doi: 10.1111/j.1365-2486.2009.02056.x |
|
|
Luyssaert S, Inglima I, Jung M, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13 (12): 2509- 2537.
doi: 10.1111/j.1365-2486.2007.01439.x |
|
|
Ma J Y, Jia X, Zha T S, et al. Ecosystem water use efficiency in a young plantation in northern China and its relationship to drought. Agricultural and Forest Meteorology, 2019, 275, 1- 10.
doi: 10.1016/j.agrformet.2019.05.004 |
|
|
Martin J, Markus R, Christopher R S, et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 2017, 541 (7638): 516- 520.
doi: 10.1038/nature20780 |
|
| Novick K A, Oishi A C, Ward E J, et al. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States. Global change biology, 2015, 21 (2): 27- 42. | |
|
Ouyang Z T, Chen J Q, Becker R, et al. Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange at multiple time scales. Ecological Complexity, 2014, 19, 46- 58.
doi: 10.1016/j.ecocom.2014.04.005 |
|
| Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 2006, 3 (15): 571- 583. | |
|
Pingintha N, Leclerc M Y, Beasley J P, et al. Hysteresis response of daytime net ecosystem exchange during drought. Biogeosciences, 2010, 7 (3): 1159- 1170.
doi: 10.5194/bg-7-1159-2010 |
|
|
Reichstein M, Falge E, Baldocchi D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11 (9): 1424- 1439.
doi: 10.1111/j.1365-2486.2005.001002.x |
|
|
Shao J, Zhou X, He H, et al. Partitioning climatic and biotic effects on interannual variability of ecosystem carbon exchange in three ecosystems. Ecosystems, 2014, 17 (7): 1186- 1201.
doi: 10.1007/s10021-014-9786-0 |
|
|
Sulman B N, Roman D T, Yi K, et al. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophysical Research Letters, 2016, 43 (18): 9686- 9695.
doi: 10.1002/2016GL069416 |
|
| Tagesson T, Fensholt R, Cappelaere B, et al. 2016. Spatiotemporal variability in carbon exchange fluxes across the Sahel. Agricultural and Forest Meteorology, 226−227: 108−118. | |
| Urbanski S, Barford C, Wofsy S, et al. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research, 2007, 112 (G2): G02020. | |
|
Yamanoi K, Mizoguchi Y, Utsugi H. Effects of a windthrow disturbance on the carbon balance of a broadleaf deciduous forest in Hokkaido, Japan. Biogeosciences, 2015, 12 (23): 6837- 6851.
doi: 10.5194/bg-12-6837-2015 |
|
| Yu G R, Chen Z, Piao S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (13): 4910- 4915. | |
|
Yu G R, Zhang L M, Sun X M, et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Global Change Biology, 2008, 14 (11): 2555- 2571.
doi: 10.1111/j.1365-2486.2008.01663.x |
|
|
Yuan W, Zheng Y, Piao S L, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 2019, 5 (8): eaax1396.
doi: 10.1126/sciadv.aax1396 |
|
|
Zha T S, Barr G A, Black A T, et al. Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology, 2009, 15 (6): 1475- 1487.
doi: 10.1111/j.1365-2486.2008.01817.x |
|
|
Zhang Y C, Piao S L, Sun Y, et al. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change, 2022, 12 (6): 581- 586.
doi: 10.1038/s41558-022-01374-w |
|
|
Zheng F, Philippe C, Colin I P, et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nature Communications, 2022, 13 (1): 989.
doi: 10.1038/s41467-022-28652-7 |
|
|
Zhong Z Q, He B, Wang Y P, et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Science Advances, 2023, 9 (32): eadf3166.
doi: 10.1126/sciadv.adf3166 |
|
|
Zhou B H, Liao Z Z, Chen S R, et al. Net primary productivity of forest ecosystems in the southwest karst region from the perspective of carbon neutralization. Forests, 2022, 13 (9): 1367.
doi: 10.3390/f13091367 |
| [1] | 王凯波,金光泽,刘志理. 温带阔叶树种不同生活史阶段的资源获取能力和防御能力关系的变化[J]. 林业科学, 2025, 61(8): 219-230. |
| [2] | 何潇,罗光成,高文强,李海奎,曾伟生,段福军,雷相东. 山西中条山林局油松纯林碳汇潜力[J]. 林业科学, 2025, 61(5): 74-84. |
| [3] | 徐来仙,何友均. 林业碳汇产品定价机制比较与启示[J]. 林业科学, 2025, 61(4): 231-248. |
| [4] | 陈汝婷,迟德富. 病虫害干扰对森林碳汇影响的研究进展[J]. 林业科学, 2025, 61(2): 1-11. |
| [5] | 贺舒蕾,陈艳梅,刘倩愿,郭文芳. 太行山东麓酸枣果实表型性状特征及主要驱动因子[J]. 林业科学, 2025, 61(2): 101-112. |
| [6] | 王巍樾,万艳芳,王冬梅,于澎涛,王彦辉,白雨诗. 六盘山华北落叶松优势木径向生长及主要环境因子的坡向差异[J]. 林业科学, 2025, 61(1): 26-36. |
| [7] | 余智涵,杨红强. 基于广义Faustmann模型的营林管理决策方法学研究前沿及展望[J]. 林业科学, 2024, 60(9): 170-182. |
| [8] | 朱教君,王高峰,张怀清,高添. 关于“气候智慧林业”研究的思考[J]. 林业科学, 2024, 60(7): 1-7. |
| [9] | 杨阳,王宝荣,孙慧,周媛媛,乔江波,宋怡,张萍萍,李自民,王云强,安韶山. 地球关键带土壤微生物介导有机碳转化研究进展[J]. 林业科学, 2024, 60(7): 165-174. |
| [10] | 孙云浩,程南洋,沈文星. 长三角地区城市森林建设的空间关联及影响因素分析[J]. 林业科学, 2024, 60(5): 177-190. |
| [11] | 刘世荣,王晖,李海奎,余振,栾军伟. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径[J]. 林业科学, 2024, 60(4): 157-172. |
| [12] | 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测[J]. 林业科学, 2024, 60(11): 63-74. |
| [13] | 杨豆,刘超华,李凤巧,唐罗忠,田野,方升佐,李孝刚. 苏北平原2个密度杨树人工林土壤团聚体及固碳差异[J]. 林业科学, 2024, 60(10): 21-28. |
| [14] | 董灵波,蔺雪莹,刘兆刚. 采伐限额对大兴安岭盘古林场森林碳汇强度的长期影响[J]. 林业科学, 2024, 60(10): 1-11. |
| [15] | 张欣, 张秋良, 孙守家, 王冰. 兴安落叶松生态系统CO2浓度及其δ13C动态对环境因子的响应[J]. 林业科学, 2023, 59(9): 55-65. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||