欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (10): 38-48.doi: 10.11707/j.1001-7488.LYKX20240493

• 前沿热点 • 上一篇    

块状木材含水率调控新方法——加水平衡法工艺优化

钱露潇1,高鑫2,吕建雄1,董友明1,施静波1,*()   

  1. 1. 南京林业大学木材科学与工程系 南京 210037
    2. 中国林业科学研究院木材工业研究所 北京 100091
  • 收稿日期:2024-08-19 出版日期:2025-10-25 发布日期:2025-11-05
  • 通讯作者: 施静波 E-mail:shijb@njfu.edu.cn
  • 基金资助:
    江苏省基础研究计划(BK20200790);国家自然科学基金青年基金项目(32001253)。

A New Approach for Conditioning Solid Wood Samples: Optimization of Water-Addition-Equilibrium Method

Luxiao Qian1,Xin Gao2,Jianxiong Lü1,Youming Dong1,Jingbo Shi1,*()   

  1. 1. Department of Wood Science and Engineering, Nanjing Forestry University Nanjing 210037
    2. Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091
  • Received:2024-08-19 Online:2025-10-25 Published:2025-11-05
  • Contact: Jingbo Shi E-mail:shijb@njfu.edu.cn

摘要:

目的: 针对常用饱和盐溶液法和饱水干燥法等木材含水率调控方法存在平衡时间长、调控精度差等难以满足核磁共振技术测试需求的问题,提出一种新的适用于木材核磁共振研究的含水率调控新方法——加水平衡法,以缩短调控时间、提高调控精度。方法: 采用加水平衡法调控杨木试样至目标含水率5%、15%和25%。加水后,平衡工艺设定为:平衡温度为45 ℃,平衡时间为48、72和96 h;平衡温度为60和75 ℃,平衡时间为24、48和72 h。对试样沿加水方向含水率梯度及由低场核磁共振试验所得横向弛豫时间图谱进行分析,优化平衡温度和平衡时间。结果: 45、60和75 ℃平衡温度下,平衡时间对样品实际含水率偏差和标准差无明显影响。相似目标含水率条件下,加水平衡法所得样品实际含水率偏差总体上小于饱和盐溶液法相应数值。目标含水率为5%和15%时,试样在45 ℃下平衡72 h或在60 ℃下平衡48 h后,其内部含水率梯度基本趋于稳定;目标含水率为25%时,该临界工艺条件为45 ℃下平衡72 h 或60 ℃下平衡24 h。室温下二次平衡工艺可进一步减小试样内部含水率梯度,使其趋近准平衡态。目标含水率为15%、平衡温度为75 ℃、平衡时间为24 h以及目标含水率为25%、平衡温度为60 ℃、平衡时间为24 h工艺条件下获得的试样横向弛豫时间图谱中存在多个峰,其余工艺条件下图谱中仅存在单一吸着水峰。综合试样含水率梯度及核磁图谱结果获得加水平衡法的最优工艺为:45 ℃下平衡72 h 或60 ℃下平衡48 h。结论: 相较于传统方法,加水平衡法的效率和所得实际含水率精度更高,为木材核磁共振表征中的含水率调控提供了新途径。

关键词: 木材, 核磁共振, 含水率调控, 加水平衡法, 横向弛豫时间

Abstract:

Objective: Common wood conditioning methods, such as the saturated salt solution method and the saturation-drying method, have limitations such as long equilibrium time and poor control accuracy, which makes it challenging to meet the testing requirements of nuclear magnetic resonance (NMR) technology. A new conditioning method, the water-addition-equilibrium method, was proposed in the present paper to reduce the conditioning time and improve the control accuracy. Method: Poplar wood (Populus spp.) was conditioned to the target moisture contents of 5%, 15% and 25% using the new method. After adding water, the equilibrium conditions were set as follows: an equilibrium temperature of 45 ℃ with equilibrium times of 48 h, 72 h and 96 h; and equilibrium temperatures of 60 and 75 ℃ with times of 24, 48 and 72 h. Two critical parameters in the water-addition-equilibrium method, namely equilibrium temperature and equilibrium time, were optimized by analyzing the moisture content profile along the direction of water addition and transverse relaxation time spectra obtained from the low-field NMR tests. Result: The results demonstrate that at equilibrium temperatures of 45, 60 and 75 ℃, the equilibrium time has no obvious effect on the actual moisture content deviation and standard deviation of the samples. Under similar target moisture content conditions, the actual moisture content deviation of the samples obtained by the water-addition-equilibrium method is generally smaller than that obtained by the saturated salt solution method. For the target moisture contents of 5% and 15%, the samples’ internal moisture content gradient stabilized after conditioning at 45 ℃ for 72 h or 60 ℃ for 48 h; for the target moisture content of 25%, the critical parameters are conditioning at 45 ℃ for 72 h or 60 ℃ for 24 h. Additionally, secondary equilibrium processes conducted at room temperature can further minimize the moisture content gradient within the sample, bringing it closer to a quasi-equilibrium state. Notably, under the conditions of the equilibrium temperature of 75 ℃ and the equilibrium time of 24 h for the target moisture content of 15%, as well as the equilibrium temperature of 60 ℃ and the equilibrium time of 24 h for the target moisture content of 25%, the transverse relaxation time spectra of samples exhibited multiple peaks. In contrast, other equilibrium conditions yielded spectra with only a single bound water peak. The optimal parameters derived from the combined analysis of the internal moisture content gradient and NMR spectra suggest equilibrating at 45 ℃ for 72 h or 60 ℃ for 48 h. Conclusion: Compared to the traditional method, the proposed water-addition-equilibration method is more efficient and more accurate in terms of actual moisture contents. This method offers a new approach to regulating the moisture content during NMR characterization of wood.

Key words: wood, nuclear magnetic resonance (NMR), moisture content regulation, water-addition-equilibrium method, transverse relaxation time

中图分类号: