林业科学 ›› 2025, Vol. 61 ›› Issue (2): 204-218.doi: 10.11707/j.1001-7488.LYKX20220849
• 综合评述 • 上一篇
郭娟, 焦立超, 何拓, 马灵玉, 姜笑梅, 殷亚方
收稿日期:
2022-11-30
修回日期:
2024-11-27
发布日期:
2025-03-03
通讯作者:
殷亚方为通信作者。E-mail:yafang@caf.ac.cn。
基金资助:
Guo Juan, Jiao Lichao, He Tuo, Ma Lingyu, Jiang Xiaomei, Yin Yafang
Received:
2022-11-30
Revised:
2024-11-27
Published:
2025-03-03
摘要: 木材解剖学是研究木材(次生木质部)中各类细胞形态特征、排列、比量、结构和功能的一门科学。在木材解剖学框架内,开展木材构造特征定量化研究,实现木材解剖信息的定量提取、挖掘、整合与应用,科学构建木材构造特征与树种生理功能、气候环境、木材性质和加工工艺等之间的相互关系,可进一步推动木材学、林学、植物学、古生物学、古气候学、考古学和物候学等学科的发展。当前,在系统科学的时代背景下,梳理木材定量解剖研究的发展脉络,厘清木材构造特征的结构性和整体性,从系统论视角探讨木材定量解剖研究的涌现性质,有利于促进木材解剖学的跨学科交叉融合,开创木材解剖学发展新格局。本研究首先介绍木材解剖学的重要发展阶段,针对木材构造特征的共性和多样性,从样品制备、信息采集和数据分析等方面总结木材定量解剖研究的主要方法,然后分别从木材构造特征与树木系统进化、木材构造特征与气候环境变化、木材构造特征与木材性质及加工利用关系3方面归纳近10年来木材定量解剖研究取得的最新进展,最后针对当前存在的问题与不足,提出未来发展展望:1) 木材定量解剖研究方法的持续性革新迭代,推动木材定量解剖高通量测试与分析平台的研发,为木材解剖学的广泛应用提供基础;2) 木材信息资源及其共享体系的全球化构建完善,增强木材定量解剖数据的可靠性和共享性,为发展基于数据驱动的木材科学研究新范式提供重要基础;3) 木材定量解剖研究体系的多学科交叉融合,从底层逻辑和层级架构视角比较木材解剖学与植物解剖学、生态学、木材加工利用等领域的关联与异同,促进多学科融合创新发展。通过进一步开展木材定量解剖研究,加强木材解剖学的跨学科交叉融合,从木材解剖学角度推动基于数据驱动的木材科学研究新范式的构建与发展,能够为林木培育、森林经营、树木分类、森林碳汇、气候变化、木材生产及可持续利用等研究提供理论基础和科学依据。
中图分类号:
郭娟, 焦立超, 何拓, 马灵玉, 姜笑梅, 殷亚方. 木材定量解剖研究新进展[J]. 林业科学, 2025, 61(2): 204-218.
Guo Juan, Jiao Lichao, He Tuo, Ma Lingyu, Jiang Xiaomei, Yin Yafang. New Research Progress on Quantitative Wood Anatomy[J]. Scientia Silvae Sinicae, 2025, 61(2): 204-218.
曹宇, 巢林, 安宇宁, 等. 2021. 科尔沁沙地刺榆水力结构特征对土壤水分环境的响应. 林业科学, 57(7): 32-42. Cao Y, Chao L, An Y N, et al. 2021. Response of hydraulic architecture of Hemiptelea davidii to soil water conditions in Horqin sandy land. Scientia Silvae Sinicae, 57(7): 32-42. [in Chinese] 何拓. 2019. 基于机器学习的黄檀属与紫檀属木材识别方法研究. 北京: 中国林业科学研究院. He T. 2019. Study on wood identification methods for Dalbergia and Pterocarpus species in combination with machine learning. Beijing: Chinese Academy of Forestry. [in Chinese] 何拓, 刘守佳, 陆杨, 等. 2021a. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统. 林业科学, 57(9): 152-159. He T, Liu S J, Lu Y, et al. 2021a. iWood: an automated wood identification system for endangered and precious tree species using convolutional neural networks. Scientia Silvae Sinicae, 57(9): 152-159. [in Chinese] 何拓, 焦立超, 郭娟, 等. 2021b. 木材信息学: 发展、应用与展望. 木材科学与技术, 35(4): 15-24. He T, Jiao L C, Guo J, et al. 2021b. Wood informatics: history of development, application, and prospective trend. Chinese Journal of Wood Science and Technology, 35(4): 15-24. [in Chinese] 黄荣凤. 2022. 木材塑性变形的湿热固定技术及机理研究进展. 林业科学, 58(2): 206-216. Huang R F. 2022. Advances in wood plastic deformation fixation by hygro-thermal treatments and the fixation mechanisms. Scientia Silvae Sinicae, 58(2): 206-216. [in Chinese] 梁永超, 万辉, 邱坚, 等. 2024. 9个桉树无性系木纤维径向变异研究. 西部林业科学, 53(1): 66-71, 81. Liang Y C, Wan H, Qiu J, et al. 2024. Radial variation analysis of fibers on nine Eucalyptus clones. Journal of West China Forestry Science, 53(1): 66-71, 81. [in Chinese] 李坚. 2014. 木材科学. 3版. 北京: 科学出版社. Li J. 2014. Wood science. 3rd ed. Beijing: Science Press. [in Chinese] 李姗, 李玉军, 张亚, 等. 2022. 基于具缘纹孔膜特征的木质部栓塞机制研究进展. 林业科学, 58(2): 196-205. Li S, Li Y J, Zhang Y, et al. 2022. Research progress in mechanism of xylem embolism based on characteristics of bordered pit membrane. Scientia Silvae Sinicae, 58(2): 196-205. [in Chinese] 李茜然, 勇璐, 潘 彪, 等. 2022. 水青树特殊管胞的分布位置及其形态特征的研究. 植物研究, 42(6): 939-945. Li X R, Yong L, Pan B, et al. 2022. The distribution location and morphological characteristics of special tracheids in Tetracentron sinense. Bulletin of Botanical Research, 42(6): 939-945. [in Chinese] 梁涤, 陈松洋, 李有贵, 等. 2022. 普洱茶树与中华木兰木质部解剖构造与进化关系分析. 木材科学与技术, 36(6): 47-53. Liang D, Chen S Y, Li Y G, et al. 2022. Comparative anatomy and evolutionary relationship of xylem of Camellia sinensis var. assamica and Magnolia miocenica. Chinese Journal of Wood Science & Technology, 36(6): 47-53.[in Chinese] 刘祎. 2017. 落叶松人工林木材材性及固碳特征对其影响因素的响应. 哈尔滨: 东北林业大学. Liu Y. 2017. Response of wood properties and carbon sequestration characteristics to factors affecting formation of larch plantation. Harbin: Northeast Forestry University. [in Chinese] 吕建雄, 赵荣军, 刘盛全, 等. 2024. 木材材质改良的物理与化学基础. 北京: 科学出版社. Lü J X, Zhao R J, Liu S Q, et al. 2024. Physical and chemical basis of wood quality improvement. Beijing: Science Press. [in Chinese] 任素红, 冯启明, 吕建雄, 等. 2022. 杉木无性系管胞形态及其拉伸性能的研究. 木材科学与技术, 35(5): 12-17. Ren S H, Feng Q M, Lü J X, et al. 2022. Study on morphology and tensile properties of wood tracheid of Chinese fir clones. Chinese Journal of Wood Science & Technology, 35(5): 12-17.[in Chinese] 王东, 林兰英, 傅 峰. 2020. 木材多尺度结构差异对其破坏影响的研究进展. 林业科学, 56(8): 141-147. Wang D, Lin L Y, Fu F. 2020. The effects of multiscale structure differences on wood fracture: a review. Scientia Silvae Sinicae, 56(8): 141-147. [in Chinese] 王静, 王 杰, 郭 娟, 等. 2022. 基于聚焦离子束-扫描电子显微技术的雪松木质部具缘纹孔三维重构. 电子显微学报, 41(1): 66-71. Wang J, Wang J, Guo J, et al. 2022. The three-dimensional structure of bordered pit in xylem of Cedrus deodara base on focused ion beam scanning electron microscopy. Journal of Chinese Electron Microscopy Society, 41(1): 66-71. [in Chinese] 吴义强. 2021. 木材科学与技术研究新进展. 中南林业科技大学学报, 41(1): 1-28. Wu Y Q. 2021. Newly advances in wood science and technology. Journal of Central South University of Forestry & Technology, 41(1): 1-28. [in Chinese] 席靖宇, 王宇轩, 衡利辰, 等. 2023. 基于计算机视觉的针叶材木射线特征提取方法. 林业工程学报, 8(3): 132-140. Xi J Y, Wang Y X, Heng L C, et al. 2023. Wood ray feature extraction method of softwood based on computer vision. Journal of Forestry Engineering, 8(3): 132-140. [in Chinese] 解庆, 刘志红. 2021. 桦木科8树种木材解剖特征比较. 东北林业大学学报, 49(11): 100-104. Xie Q, Liu Z H. 2021. Comparison on wood anatomy of eight species (Betulaceae). Journal of Northeast Forestry University, 49(11): 100-104. [in Chinese] 谢雪霞, 刘波, 孙华林, 等. 2014. 我国四种珍贵阔叶人工林木材的机械加工性能评价. 木材工业, 28(5): 36-40. Xie X X, Liu B, Sun H L, et al. 2014. Evaluation on wood machining properties of four valuable hardwood species from forest plantations in China. China Wood Industry, 28(5): 36-40. [in Chinese] 殷方宇, 都亚敏, 李珠, 等. 2024. 楸木不同类型组织的湿胀-干缩行为. 林业科学, 60(7): 105-116. Yin F Y, Du Y M, Li Z, et al. 2024. Shrinkage and swelling behavior of different types of tissues in Catalpa bungei wood. Scientia Silvae Sinicae, 60(7): 105-116. [in Chinese] 周朝彬. 2019. 古尔班通古特沙漠梭梭木质部生态解剖与射线功能研究. 雅安: 四川农业大学. Zhou C B. 2019. Study on the ecological anatomy and ray function of the Haloxylon ammodendron xylem in the Gurbantunggut desert, China. Ya’an: Sichuan Agricultural University. [in Chinese] Alia-Syahirah Y, Paridah M T, Hamdan H, et al. 2019. Effects of anatomical characteristics and wood density on surface roughness and their relation to surface wettability of hardwood. Journal of Tropical Forest Science, 31(3): 269-277. Amoah M, Inyong S. 2019. Comparison of some physical, mechanical and anatomical properties of smallholder plantation teak (Tectona grandis Linn. f. ) from dry and wet localities of Ghana. Journal of the Indian Academy of Wood Science, 16(2): 125-138. Arzac A, López-Cepero J M, Babushkina E A, et al. 2018. Applying methods of hard tissues preparation for wood anatomy: imaging polished samples embedded in polymethylmethacrylate. Dendrochronologia, 51: 76-81. Baas P, Ewers F W, Davis S D, et al. 2004. Evolution of xylem physiology//The evolution of plant physiology from whole plants to ecosystems. Amsterdam: Elsevier, 273-295. Babushkina E A, Belokopytova L V, Zhirnova D F, et al. 2019. Siberian spruce tree ring anatomy: imprint of development processes and their high-temporal environmental regulation. Dendrochronologia, 53: 114-124. Bailey I W, Tupper W W. 1918. Size variation in tracheary cells: I. A comparison between the secondary xylems of vascular cryptogams, gymnosperms and angiosperms. Proceedings of the American Academy of Arts and Sciences, 54(2): 149-204. Beeckman H. 2016. Wood anatomy and trait-based ecology. IAWA Journal, 37(2): 127-151. Berglund L A, Burgert I. 2018. Bioinspired wood nanotechnology for functional materials. Advanced Materials, 30(19): e1704285. Björklund J, Seftigen K, Schweingruber F, et al. 2017. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in northern Hemisphere conifers. New Phytologist, 216(3): 728-740. Bouslimi B, Koubaa A, Bergeron Y. 2019. Intra-ring variations and interrelationships for selected wood anatomical and physical properties of Thuja occidentalis L. Forests, 10(4): 339. Buttó V, Millan M, Rossi S, et al. 2021. Contrasting carbon allocation strategies of ring-porous and diffuse-porous species converge toward similar growth responses to drought. Frontiers in Plant Science, 12: 760859. Carlquist S. 2012. How wood evolves: a new synthesis. Botany, 90(10): 901-940. Carlquist S. 2017. Conifer tracheids resolve conflicting structural requirements: data, hypotheses, questions. Journal of the Botanical Research Institute of Texas, 11(1): 123-141. Carlquist S. 2018. Living cells in wood 3. overview; functional anatomy of the parenchyma network. The Botanical Review, 84(3): 242-294. Carrer M, Unterholzner L, Castagneri D. 2018. Wood anatomical traits highlight complex temperature influence on Pinus cembra at high elevation in the eastern Alps. International Journal of Biometeorology, 62(9): 1745-1753. Chang H C, Gacias Amengual N, Botz A, et al. 2022. Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors. Nature Communications, 13: 6258. Chen C J, Kuang Y D, Zhu S Z, et al. 2020. Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 5: 642-666. Chen Z Q, Abramowicz K, Raczkowski R, et al. 2016. Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce. Holzforschung, 70(9): 829-838. Cunha Neto I L, Hall B T, Lanba A R, et al. 2023. Laser ablation tomography (LATscan) as a new tool for anatomical studies of woody plants. New Phytologist, 239(1): 429-444. de Blaere R D, Lievens K, Hassel D V, et al. 2023. SmartWoodID – an image collection of large end-grain surfaces to support wood identification systems. Database, 34. de Mil T, Tarelkin Y, Hahn S, et al. 2018. Wood density profiles and their corresponding tissue fractions in tropical angiosperm trees. Forests, 9(12): 763. Dünisch O. 2017. Relationship between anatomy and vibration behaviour of softwoods and hardwoods. IAWA Journal, 38(1): 81-98. Dyachuk P, Arzac A, Peresunko P, et al. 2020. AutoCellRow (ACR)–a new tool for the automatic quantification of cell radial files in conifer images. Dendrochronologia, 60: 125687. Elliott A D. 2019. Confocal microscopy: principles and modern practices. Current protocols in Cytomery, 92: e68. Esteban L G, de Palacios P, Heinz I, et al. 2023. Softwood anatomy: a review. Forests, 14: 323. Evans R, Downes G, Menz D, et al. 2017. Rapid measurement of variation in tracheid transverse dimensions in a Radiata pine tree. Appita Journal, 70(3): 284-289. Fonti P, Babushkina E A. 2016. Tracheid anatomical responses to climate in a forest-steppe in southern Siberia. Dendrochronologia, 39: 32-41. Gärtner H, Cherubini P, Fonti P, et al. 2015a. A technical perspective in modern tree-ring research: how to overcome dendroecological and wood anatomical challenges. Journal of Visualized Experiments, (97): 52337. Gärtner H, Banzer L, Schneider L, et al. 2015b. Preparing micro sections of entire (dry) conifer increment cores for wood anatomical time-series analyses. Dendrochronologia, 34: 19-23. Gasson P E, Lancaster C A, Young R, et al. 2021. WorldForestID: addressing the need for standardized wood reference collections to support authentication analysis technologies; a way forward for checking the origin and identity of traded timber. Plants, People, Planet, 3(2): 130-141. Gennaretti F, Carrer M, García-González I, et al. 2022. Editorial: Quantitative wood anatomy to explore tree responses to global change. Frontiers in Plant Science, 13: 998895. Guo B X, Lü H F, Xu B. 2024. Study on the influence of wood ray morphological characteristics on the tensile strength of wood parallel to grain. Industrial Crops and Products, 221: 119258. Guo J, Song K L, Salmén L, et al. 2015. Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydrate Polymers, 115: 207-214. Guo J, Xiao L, Han L Y, et al. 2019. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2 400 years old. IAWA Journal, 40(4): 820-844. Gupta P, Bisht D, Kandpal V, et al. 2021. Advances in the wood anatomical studies with innovations in microscopy: a review// Pingault N, Roshetko J M, Meybeck A. Asia-Pacific forest sector outlook: innovative forestry for a sustainable future. Youth contributions from Asia and the Pacific. CGIAR Research Program on Forests, Trees and Agroforestry (FTA) and FAO. Haag V, Koch G, Richter H G, et al. 2019. Wood anatomical and topochemical analyses to characterize juvenile and adult wood of lesser-known species from Central America (Mexico). IAWA Journal, 40(4): 785-803. Hanna M G, Parwani A, Sirintrapun S J. 2020. Whole slide imaging: technology and applications. Advances in Anatomic Pathology, 27(4): 251-259. Helmling S, Olbrich A, Heinz I, et al. 2018. Atlas of vessel elements. IAWA Journal, 39(3): 249-352. Hubau W, den Bulcke J V, Kitin P, et al. 2013. Complementary imaging techniques for charcoal examination and identification. IAWA Journal, 34(2): 147-168. IAWA Committee. 1989. IAWA List of microscopic features for hardwood identification. IAWA Bull, 10: 219-332. IAWA Committee. 2004. IAWA list of microscopic features for softwood identification. IAWA Journal, 25: 1-70. Inkson B J. 2016. In materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing, Singapore: 17. Keret R, Schliephack P M, Stangler D F, et al. 2024. An open-source machine-learning approach for obtaining high-quality quantitative wood anatomy data from E. grandia and P. radiata xylem. Plant Science, 340: 111970. Klisz M, Miodek A, Kojs P, et al. 2018. Long slide holders for microscope stages. IAWA Journal, 39(4): 489-496. Koddenberg T, Militz H. 2018. Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography. Micron, 111: 28-35. Kurihara D, Mizuta Y, Sato Y, et al. 2015. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development, 142(23): 4168-4179. Lamesa A, Tsegaye B. 2022. Evaluation of fiber characteristics and basic density of Acacia melanoxylon (R. Br. ) grown in Ethiopia for pulp and paper making. Annals of Civil and Environmental Engineering, 6(1): 53-61. Lehnebach R, Campioli M, Gričar J, et al. 2021. High-resolution X-ray computed tomography: a new workflow for the analysis of xylogenesis and intra-seasonal wood biomass production. Frontiers in Plant Science, 12: 698640. Li S, Lu S, Yuan C H, et al. 2023a. The three-dimensional distribution of bordered pits across growth rings of stem segment in Platycladus orientalis (Cupressaceae)seedlings. IAWA Journal, 45(2): 177-194. Li L Z, Cao Q H, Wu Y T, et al. 2023b. Wood-derived continuously oriented three-phase interfacial channels for high-performance quasi-solid-state alkaline zinc batteries. Advanced Materials, 35(26): e2300132. Li R, Guo J, Macchioni N, et al. 2022a. Characterisation of waterlogged archaeological wood from Nanhai No. 1 shipwreck by multidisciplinary diagnostic methods. Journal of Cultural Heritage, 56: 25-35. Li S, Li X, Wang J, et al. 2022b. Hydraulic traits are coupled with plant anatomical traits under drought-rewatering cycles in Ginkgo biloba L. Tree Physiology, 42(6): 1216-1227. Li T, Zhang X, Lacey S D, et al. 2019. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 18(6): 608-613. Li W, Chen Z J, Yu H P, et al. 2021. Wood-derived carbon materials and light-emitting materials. Advanced Materials, 33(28): e2000596. Liang W, Heinrich I, Helle G, et al. 2013. Applying CLSM to increment core surfaces for histometric analyses: a novel advance in quantitative wood anatomy. Dendrochronologia, 31(2): 140-145. Link R M, Schuldt B, Choat B, et al. 2018. Maximum-likelihood estimation of xylem vessel length distributions. Journal of Theoretical Biology, 455: 329-341. Liu H Q, Lin F H, Lin J H, et al. 2018. Phase-retrieval-based synchrotron X-ray micro-tomography for 3D structural characterization and quantitative analysis of agalloch eaglewood. Wood Science and Technology, 52(3): 839-854. Liu P L, Zhang X, Mao J F, et al. 2020. The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biology, 21(1): 291. Liu S J, He T, Wang J J, et al. 2022. Can quantitative wood anatomy data coupled with machine learning analysis discriminate CITES species from their look-alikes? Wood Science and Technology, 56(5): 1567-1583. Luostarinen K, Heräjärvi H. 2018. Relationship between anatomy and shear strength in wood of Larix sibirica. Holzforschung, 72(11): 1001-1006. Ma L Y, Meng Q L, Jiang X M, et al. 2023. Spatial organization and connectivity of wood rays in Pinus massoniana xylem based on high-resolution μCT-assisted network analysis. Planta, 258(2): 28. Maaß M C, Saleh S, Militz H, et al. 2020. The structural origins of wood cell wall toughness. Advanced Materials, 32(16): e1907693. Majda M, Kozlova L, Banasiak A, et al. 2021. Elongation of wood fibers combines features of diffuse and tip growth. New Phytologist, 232(2): 673-691. Martin B, Colin J, Perré P, et al. 2022. CT investigation of 3D liquid pathways in the anatomical structure of Norway spruce wood during imbibition. Holzforschung, 76(7): 592-603. Meng Q L, Fu F, Wang J, et al. 2021. Ray traits of juvenile wood and mature wood: Pinus massoniana and Cunninghamia lanceolata. Forests, 12(9): 1277. Mi R Y, Chen C J, Keplinger T, et al. 2020. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 11(1): 3836. Morris H, Plavcová L, Cvecko P, et al. 2016. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209(4): 1553-1565. Muhammad N A, Armynah B, Tahir D. 2022. High transparent wood composite for effective X-ray shielding applications. Materials Research Bulletin, 154: 111930. Nedzved A, Mitrović A L, Savić A, et al. 2018. Automatic image processing morphometric method for the analysis of tracheid double wall thickness tested on juvenile Picea omorika trees exposed to static bending. Trees, 32(5): 1347-1356. Olano J M, Arzac A, García-Cervigón A I, et al. 2013. New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. New Phytologist, 198(2): 486-495. Olson M E. 2020. From Carlquist’s ecological wood anatomy to Carlquist’s law: why comparative anatomy is crucial for functional xylem biology. American Journal of Botany, 107(10): 1328-1341. Ozden S, Ennos A R. 2014. Understanding the function of rays and wood density on transverse fracture behavior of green wood of three species. Journal of Agricultural Science and Technology, B4: 731-743. Pace M R, Gerolamo C S, Onyenedum J G, et al. 2022. The wood anatomy of Sapindales: diversity and evolution of wood characters. Brazilian Journal of Botany, 45(1): 283-340. Pandey S. 2021. Climatic influence on tree wood anatomy: a review. Journal of Wood Science, 67(1): 24. Perré P, Almeida G, Ayouz M, et al. 2016. New modelling approaches to predict wood properties from its cellular structure: image-based representation and meshless methods. Annals of Forest Science, 73(1): 147-162. Pramod S, Patel P B, Rao K S. 2013. Influence of exogenous ethylene on cambial activity, xylogenesis and ray initiation in young shoots of Leucaena leucocephala (lam. ) de Wit. Flora-Morphology, Distribution, Functional Ecology of Plants, 208(10/11/12): 549-555. Prendin A L, Mayr S, Beikircher B, et al. 2018. Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. Tree Physiology, 38(8): 1088-1097. Prendin A L, Petit G, Carrer M, et al. 2017. New research perspectives from a novel approach to quantify tracheid wall thickness. Tree Physiology, 37(7): 976-983. Račko V, Mišíková O, Štefková J, et al. 2018. A fast method to prepare microslides of wood in advanced stages of decay. IAWA Journal, 39(2): 234-243. Reinig F, Gärtner H, Crivellaro A, et al. 2018. Introducing anatomical techniques to subfossil wood. Dendrochronologia, 52: 146-151. Rendle B J. 1932. Wood anatomy as a link between botany and forestry. Nature, 130(3292): 834-836. Resente G, Gillert A, Trouillier M, et al. 2021. Mask, train, repeat! Artificial intelligence for quantitative wood anatomy. Frontiers in Plant Science, 12: 767400. Salmén L. 2018. Wood cell wall structure and organisation in relation to mechanics//Plant Biomechanics. Cham: Springer International Publishing: 3-19. Scholz A, Klepsch M, Karimi Z, et al. 2013. How to quantify conduits in wood? Frontiers in Plant Science, 4: 56. Seo J W, Smiljanić M, Wilmking M. 2014. Optimizing cell-anatomical chronologies of Scots pine by stepwise increasing the number of radial tracheid rows included: case study based on three Scandinavian sites. Dendrochronologia, 32(3): 205-209. Stepanova A V, Oskolski A A, Tilney P M, et al. 2013. Wood anatomy of the tribe podalyrieae (Fabaceae, Papilionoideae): diversity and evolutionary trends. South African Journal of Botany, 89: 244-256. Tang Q H, Zou M, Chang L, et al. 2022. A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chemical Engineering Journal, 430: 132152. Toumpanaki E, Shah D U, Eichhorn S J. 2021. Beyond what meets the eye: imaging and imagining wood mechanical-structural properties. Advanced Materials, 33(28): e2001613. von Arx G, Arzac A, Olano J M, et al. 2015. Assessing conifer ray parenchyma for ecological studies: pitfalls and guidelines. Frontiers in Plant Science, 6: 1016. von Arx G, Carrer M, Crivellaro A, et al. 2021. Q-NET–a new scholarly network on quantitative wood anatomy. Dendrochronologia, 70: 125890. von Arx G, Crivellaro A, Prendin A L, et al. 2016. Quantitative wood anatomy-practical guidelines. Frontiers in Plant Science, 7: 781. von Baeyer M, Marston J M. 2021. Best practices for digitizing a wood slide collection: the bailey-wetmore wood collection of the Harvard University Herbaria. Quaternary International, 593: 50-59. Wang J, Li S, Guo J, et al. 2021. Characterization and comparison of the wood anatomical traits of plantation grown Quercus acutissima and Quercus variabilis. IAWA Journal, 42(3): 244-257. Wheeler E A, Baas P, Rodgers S. 2007. Variations in dieot wood anatomy: a global analysis based on the inside wood database. IAWA Journal, 28(3): 229-258. Wheeler E A, Baas P. 2019. Wood evolution: Baileyan trends and Functional traits in the fossil record. IAWA Journal, 40(3): 488-529. Wheeler E A, Gasson P E, Baas P. 2020. Using the InsideWood web site: potentials and pitfalls. IAWA Journal, 41(4): 412-462. Wiedenhoeft A C. 2020. The XyloPhone: toward democratizing access to high-quality macroscopic imaging for wood and other substrates. IAWA Journal, 41(4): 699-719. Williamson V G, Milburn J A. 2017. Xylem vessel length and distribution: does analysis method matter? A study using Acacia. Australian Journal of Botany, 65(3): 292-303. Yin L J, Ma L Y, Jiang X M, et al. 2024. Positional differences in the micro- and ultra-structural variations of ray parenchyma cells during the transformation from sapwood to heartwood. Frontiers in Plant Science, 15: 1431818. Yin L, Jiang X, Ma L, et al. 2022. Anatomical adaptions of pits in two types of ray parenchyma cells in Populus tomentosa during the xylem differentiation. Journal of Plant Physiology, 278: 153830. Yin Y, Berglund L, Salmén L. 2011. Effect of steam treatment on the properties of wood cell wall. Biomacromolecules, 112: 194-202. Zemke V, Haag V, Koch G. 2020. Wood identification of charcoal with 3D-reflected light microscopy. IAWA Journal, 41(4): 478-489. Zhang S, Belien E, Ren H, et al. 2020. Wood anatomy of boreal species in a warming world: a review. IForest - Biogeosciences and Forestry, 13(1): 130-138. Zhernova D A, Nilova M V, Oskolski A A. 2021. Comparative wood anatomy of Astropanax and Neocussonia, an Afro-Malagasy lineage of Araliaceae. Botanical Journal of the Linnean Society, 195(3): 327-347. Zhong lY, Wu G F, Fu F, et al. 2022. A novel constitutive model for the porosity related super-large deformation and anisotropic behavior of wood under perpendicular to grain compression. Wood Science and Technology, 56(2): 553-571. Ziaco E. 2020. A phenology-based approach to the analysis of conifers intra-annual xylem anatomy in water-limited environments. Dendrochronologia, 59: 125662. Ziemińska K, Westoby M, Wright I J. 2015. Broad anatomical variation within a narrow wood density range: a study of twig wood across 69 Australian angiosperms. PLoS One, 10(4): e0124892. Zou M, Chen Y P, Chang L, et al. 2022. Toward 90 μm superthin transparent wood film impregnated with quantum dots for color-converting materials. ACS Sustainable Chemistry & Engineering, 10(6): 2097-2106. |
[1] | 刘守佳,何拓,陆杨,焦立超,郭娟,Alex CWiedenhoeft,殷亚方. 桃花心木木材定量解剖特征变异性及其识别[J]. 林业科学, 2024, 60(5): 169-176. |
[2] | 何拓,刘守佳,陆杨,张永刚,焦立超,殷亚方. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统[J]. 林业科学, 2021, 57(9): 152-159. |
[3] | 孙耀星;戚继忠;杨庚;庞久寅;杜凤国. 赛黑桦的构造特征和物理力学性质[J]. 林业科学, 2012, 48(2): 180-186. |
[4] | 李国旗 张纪林 安树青 李瑾 王云静. 土壤盐胁迫下杨树次生木质部的解剖特征[J]. 林业科学, 2003, 39(4): 89-97. |
[5] | 林鹏 林益明 林建辉. 桐花树和海桑次生木质部的生态解剖[J]. 林业科学, 2000, 36(2): 125-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||