欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (5): 1-11.doi: 10.11707/j.1001-7488.LYKX20240590

• 特邀综述 • 上一篇    下一篇

基于木材与水分相互作用的木基水凝胶研究进展

陈佳星1,2,付宗营1,张永跃1,3,王喜明2,卢芸1,*()   

  1. 1. 中国林业科学研究院木材工业研究所 北京100091
    2. 内蒙古农业大学材料科学与艺术设计学院 呼和浩特 010018
    3. 南京林业大学材料科学与工程学院 南京 210037
  • 收稿日期:2024-10-09 出版日期:2025-05-20 发布日期:2025-05-24
  • 通讯作者: 卢芸 E-mail:y.lu@caf.ac.cn
  • 基金资助:
    中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2022XD004)。

Progress in the Research of Wood-Based Hydrogels Based on the Interaction between Wood and Water

Jiaxing Chen1,2,Zongying Fu1,Yongyue Zhang1,3,Ximing Wang2,Yun Lu1,*()   

  1. 1. Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091
    2. College of Material Science and Art Design, Inner Mongolia Agricultural University  Hohhot 010018
    3. College of Material Science and Engineering, Nanjing Forestry University Nanjing 210037
  • Received:2024-10-09 Online:2025-05-20 Published:2025-05-24
  • Contact: Yun Lu E-mail:y.lu@caf.ac.cn

摘要:

水凝胶是一种由亲水性聚合物通过化学或物理交联而成的具有三维网络结构的聚合物材料,通常具备柔性、亲水性、弹性等特点,在生物医药、柔性电子、智能材料等领域应用广泛。传统水凝胶大多以化石基聚合物为原料,原料不可再生,且部分聚合物还有一定毒性,在使用和回收利用过程中会给人体和环境带来潜在威胁。大多数水凝胶是由均匀溶解在水介质中的分子组分聚合或组装而合成的,得到的聚合物网络往往具有各向同性,在长时间外力作用下容易产生机械破坏。近年来,研究者们致力于将具有层次化各向异性结构的材料与有机、无机相在纳米尺度上进行组合,制备具有显著机械性能和生物功能且兼备定向结构的水凝胶,然而制备这类水凝胶仍是一个挑战。木材是一种丰富的天然可再生生物质资源,具备独特的多尺度分级各向异性结构、定向的纤维素纳米纤维和多孔特性,可被用来制备水凝胶。木材中的纤维素纤维具有高强度和高模量,可作为增强相增强水凝胶的机械性能,其天然的多孔结构为制备高吸水性的水凝胶提供了基础,且木材中许多官能团,如羟基使木材易于进行各种化学改性,为根据不同应用需求定制水凝胶的性质提供了可能性。基于此,近年来研究人员通过对木材进行化学处理,得到具有亲水性的纤维骨架结构,再将聚合物浸渍到木材微观通道中,使其与其他聚合物交联,原位形成具有天然木基骨架结构的水凝胶,这种水凝胶不仅具有传统水凝胶的柔性、可调节的物理和化学特性,同时还能发挥出木材各向异性、优异机械性能、绿色可降解的优势。本研究通过分析木材组分(纤维素、半纤维素、木质素)与水分子间的相互作用,总结木基水凝胶骨架的制备方法及不同类型木基水凝胶的特点,归纳木基水凝胶中分子间的交联方式,对其在生物医药、柔性电子、智能材料等领域的应用现状进行总结,并结合木基水凝胶取得的相关研究成果,提出木基水凝胶现阶段仍需解决的问题,展望其未来研究趋势。

关键词: 木材, 水凝胶, 水分, 聚合物交联, 应用

Abstract:

Hydrogels are polymeric materials composed of hydrophilic polymers that form a three-dimensional network structure through chemical or physical cross-linking. They typically possess characteristics such as flexibility, hydrophilicity, and elasticity, and are widely used in fields like biomedical engineering, flexible electronics, and smart materials. Traditional hydrogels are mostly made from fossil-based polymers, which are non-renewable and can be toxic to some extent. These polymers may pose potential threats to human health and the environment during use and recycling. Most hydrogels are synthesized by polymerization or assembly of molecular components uniformly dissolved in an aqueous medium. The resulting polymer networks are usually isotropic and prone to mechanical failure under prolonged external forces. In recent years, researchers have been committed to combining materials with hierarchical anisotropic structures with organic and inorganic phases at the nanoscale to fabricate hydrogels with significant mechanical properties and biological functions, as well as oriented structures. However, the preparation of such hydrogels remains a major challenge. Wood is an abundant, natural, and renewable biomass resource with unique multi-scale hierarchical anisotropic structures, oriented cellulose nanofibers, and porous characteristics, making it a promising candidate for hydrogel fabrication. Moreover, the cellulose fibers in wood have high strength and modulus, which can enhance the mechanical properties of hydrogels when used as reinforcing phases. The natural porous structure of wood provides a basis for preparing highly absorbent hydrogels. Additionally, the presence of many functional groups in wood, such as hydroxyl groups, facilitates various chemical modifications and offers the possibility of tailoring the properties of hydrogels according to different application needs. Based on this, in recent years, researchers have chemically treated wood to obtain hydrophilic fibrous frameworks. They then infiltrate polymers into the microchannels of wood and cross-link them with other polymers to form wood-based hydrogels with natural fibrous structures in situ. These hydrogels not only possess the flexibility and tunable physical and chemical properties of traditional hydrogels but also leverage the anisotropy, excellent mechanical properties, and green degradability of wood. This study analyzes the interactions between wood components (cellulose, hemicellulose, lignin) and water molecules to summarize the preparation methods of wood-based hydrogel frameworks and the characteristics of different types of wood-based hydrogels. It also elucidates the cross-linking mechanisms within wood-based hydrogels. Furthermore, it reviews the current applications of wood-based hydrogels in biomedical engineering, flexible electronics, and smart materials. Based on the relevant research achievements in wood-based hydrogels, this study identifies the challenges that need to be addressed at the current stage and provides an outlook on the future research trends in this field.

Key words: wood, hydrogel, water, polymer crosslinking, application

中图分类号: