欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (9): 22-38.doi: 10.11707/j.1001-7488.LYKX20240472

• 研究论文 • 上一篇    

面向非全覆盖遥感辅助数据的森林地上生物量估算

黄柳源1,2,郑炎1,2,*(),程欣杰1,2,曾伟生3,徐晴4,5,侯正阳1,2   

  1. 1. 北京林业大学森林培育与保护教育部重点实验室 北京100083
    2. 国家林业和草原局黑龙江三江平原沼泽草甸生态系统定位观测研究站 双鸭山518000
    3. 国家林业和草原局林草调查规划院 北京100714
    4. 国际竹藤中心竹藤资源与环境研究所 北京 100102
    5. 国家林业和草原局/北京市共建竹藤科学与技术重点实验室 北京100102
  • 收稿日期:2024-08-06 出版日期:2025-09-25 发布日期:2025-10-10
  • 通讯作者: 郑炎 E-mail:houzhengyang@bjfu.edu.cn
  • 基金资助:
    国家重点研发计划重点专项项目(2023YFF1304002-05);国家社会科学基金项目(22BTJ005)(统计学部)。

Estimation of Forest Aboveground Biomass Based on Non-Wall-to-Wall Remote Sensing Auxiliary Data

Liuyuan Huang1,2,Yan Zheng1,2,*(),Xinjie Cheng1,2,Weisheng Zeng3,Qing Xu4,5,Zhengyang Hou1,2   

  1. 1. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University Beijing 100083
    2. Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration Shuangyashan 518000
    3. Academy of Forestry Inventory and Planning, National Forestry and Grassland Administration Beijing 100714
    4. Institute of Resources and Environment, International Centre for Bamboo and Rattan Beijing 100102
    5. Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102
  • Received:2024-08-06 Online:2025-09-25 Published:2025-10-10
  • Contact: Yan Zheng E-mail:houzhengyang@bjfu.edu.cn

摘要:

目的: 面向森林资源(如森林地上生物量AGB)年度调查出数面临的小样本量与遥感辅助数据非全覆盖问题,基于混合估计方法与蒙特卡洛模拟法,探讨混合估计方法解决该问题的实际推断能力及其对样本量的响应规律,优化调查样本量,阐明2类统计推断方法(基于全覆盖遥感辅助数据和基于非全覆盖遥感辅助数据)间的联系,为解决森林资源年度调查出数提供方法理论参考。方法: 应用混合估计理论突破小样本量与非全覆盖遥感辅助数据条件下提升抽样精度的瓶颈,基于根河林业局第九次森林资源清查完整数据,设计不同大小的样地样本量(m1)和遥感辅助数据样本量(m2),模拟小样本量、遥感辅助数据非全覆盖情形,引入传统基于模型(CMB)和基于设计(DB)的统计推断方法作为比较,探究混合估计量(Hybrid估计量)的推断效率及其对样本量的响应规律,同时基于Hybrid估计量的方差分析,从方差组分变化规律及公式联系上揭示Hybrid估计量与CMB估计量的数学关联。结果: 1) 当Hybrid估计量对辅助数据的抽样强度为100%时,总方差等于模型方差,与CMB估计量的推断结果一致。2) 当样地样本S1完整时,基于模型方法计算的总体方差仅为基于设计方法计算结果的51.95%,推断精度提升2.04%。3) Hybrid估计量推断研究区AGB的总体参数时,若样本量m1保持一致,Hybrid估计量在m2约为12 800(0.127%)后推断精度基本稳定,推断精度与样地、辅助数据样本量呈倒J形的非线性关系。考虑到调查成本和结果稳定性,研究认为AGB总体参数推断的最佳性价比样本量约为$ {m}_{1}=40\left(41\%\right) $$ m_2=12\ 800\left(0.127\%\right) $。4) Hybrid估计量基于根河林业局第九次森林资源清查的约1/5样地样本和0.127%的非全覆盖免费遥感辅助数据样本,达到近90%(87.16%)的推断精度。结论: 1) CMB估计量可视为Hybrid估计量的特例,实际调查中可根据精度要求、成本限制等调整总体参数的推断方法。2) 在Hybrid估计量中,来源于模型的方差组分占据总体参数推断不确定性的主导地位,意味着增加实测样本量、使用高精度辅助数据(如激光雷达数据)、优化建模方法等是降低其推断不确定性的有力手段。3) Hybrid估计量的推断精度与样地、辅助数据样本量呈倒J形的非线性关系,以此确定根河林业局实现AGB年度出数需求的高性价比样本量为$ {m}_{1}=40\left(41\%\right) $$ m_2=12\ 800\left(0.127\%\right) $,相较于传统基于设计与基于模型的统计推断,在精度和成本上有显著改善,可较好满足县域尺度的总体年度调查出数需求。4) 面向国家森林资源年度监测体系,Hybrid估计量在小尺度区域(根河林业局),基于约1/5的实测样本和0.127%的非全覆盖遥感辅助数据样本,已达到近90%的推断精度(87.16%),通过辅助数据质量提升、建模方法优化等可进一步提高推断精度,具备基于年度调查实测样本进行年度出数的潜力。

关键词: 混合估计量, 统计推断, 非全覆盖遥感辅助数据, 森林资源调查, 森林地上生物量

Abstract:

Objective: Aiming at the problems of small sample size and non-wall-to-wall remote sensing auxiliary data when generating annual estimates in forest inventory (such as forest aboveground biomass, AGB), based on the hybrid estimation method and Monte Carlo simulation method, the actual inference ability of the hybrid estimation method to solve this problem and the response law of the method to the sample size were explored, the inventory sample size was optimized, and the relationship between the two types of statistical inference methods (based on wall-to-wall remote sensing auxiliary data and based on non-wall-to-wall remote sensing auxiliary data) was clarified to provide a methodological theoretical reference for generating annual estimates in forest inventory. Method: The hybrid estimation theory was used to break through the bottleneck of improving sampling accuracy under the conditions of small sample and non-wall-to-wall remote sensing auxiliary data. Based on the complete data of the 9thnational forest inventory in Genhe Forestry Bureau, different sample sizes of plots m1 and remote sensing auxiliary data sample sizes m2 were designed to simulate the small sample size and non-wall-to-wall remote sensing auxiliary data. The conventional model-based and design-based statistical inference methods were introduced for comparison to explore the inference efficiency of the hybrid estimator and its response to the sample size. At the same time, based on the variance analysis of the Hybrid estimator, the mathematical relationship between the Hybrid estimator and the CMB estimator is revealed from the variation rules of the variance components and the formula connection. Result: 1) When the sampling intensity of the Hybrid estimator is 100%, the total variance is equal to the model variance, which is consistent with the inference results of the CMB estimator. 2) When sample plot $ S_1 $ is complete, the variance calculated by the model-based method is only about 51.95% of the variance based on the design method, and the model-based inference accuracy is improved by 2.04% compared with the design-based inference accuracy. 3) When the Hybrid estimator infers the estimates of AGB in the study area, if the sample size m1 remains the same, the inference accuracy of the Hybrid estimator is basically stable after m2 is about 12 800 (0.127%), and the inference accuracy has an inverted J-shaped nonlinear relationship with the sample size of the sample plot and auxiliary data. Considering the survey cost and the stability of the results, the best cost-effective sample size for inferring the estimates of AGB is about $ {m}_{1}=40 \left(41\%\right) $ and $ m_2=12\ 800\left(0.127\%\right) $. 4) The Hybrid estimator is based on about 1/5 sample plots of the 9th National Forest Inventory of Genhe Forestry Bureau and 0.127% of the non-wall-to-wall free remote sensing auxiliary data samples, and has achieved an inference accuracy of nearly 90% (87.16%). Conclusion: 1) The CMB estimator can be regarded as a special case of the Hybrid estimator. In actual forest inventory, the method of inferring estimates can be adjusted according to accuracy requirements and cost constraints. 2) In the Hybrid estimator, the variance component derived from the model dominates the uncertainty of inference, which means that increasing the measured sample size, using high-precision auxiliary data (such as lidar data), and optimizing modeling methods will be powerful means to reduce its inference uncertainty. 3) Based on the inverted J-shaped nonlinear relationship between the Hybrid estimator inference accuracy and the sample size of sample plots and auxiliary data, the cost-effective sample size for Genhe Forestry Bureau to infer the annual forest resource estimates is determined to be $ {m}_{1}=40 \left(41\%\right) $, $ m_2=12\ 800\left(0.127\%\right) $. Compared with traditional design-based and model-based statistical inference, it has significant improvements in accuracy and cost, and can better meet the needs of county's annual forest management inventory. 4) For the national forest annual monitoring system, the Hybrid estimator reaches nearly 90% (87.16%) of the inference accuracy in the small-scale area (Genhe Forestry Bureau), based on about 1/5 of the field samples and 0.127% of non-wall-to-wall remote sensing auxiliary data. The inference accuracy can be further improved by improving the quality of auxiliary data and optimizing modeling methods. It has the potential to generating annual estimates innational forest inventory based on annual field plots.

Key words: hybrid estimator, statistical inference, non-wall-to-wall remote sensing auxiliary data, forest inventory, forest aboveground biomass (AGB)

中图分类号: