林业科学 ›› 2025, Vol. 61 ›› Issue (9): 22-38.doi: 10.11707/j.1001-7488.LYKX20240472
• 研究论文 • 上一篇
黄柳源1,2,郑炎1,2,*(),程欣杰1,2,曾伟生3,徐晴4,5,侯正阳1,2
收稿日期:
2024-08-06
出版日期:
2025-09-25
发布日期:
2025-10-10
通讯作者:
郑炎
E-mail:houzhengyang@bjfu.edu.cn
基金资助:
Liuyuan Huang1,2,Yan Zheng1,2,*(),Xinjie Cheng1,2,Weisheng Zeng3,Qing Xu4,5,Zhengyang Hou1,2
Received:
2024-08-06
Online:
2025-09-25
Published:
2025-10-10
Contact:
Yan Zheng
E-mail:houzhengyang@bjfu.edu.cn
摘要:
目的: 面向森林资源(如森林地上生物量AGB)年度调查出数面临的小样本量与遥感辅助数据非全覆盖问题,基于混合估计方法与蒙特卡洛模拟法,探讨混合估计方法解决该问题的实际推断能力及其对样本量的响应规律,优化调查样本量,阐明2类统计推断方法(基于全覆盖遥感辅助数据和基于非全覆盖遥感辅助数据)间的联系,为解决森林资源年度调查出数提供方法理论参考。方法: 应用混合估计理论突破小样本量与非全覆盖遥感辅助数据条件下提升抽样精度的瓶颈,基于根河林业局第九次森林资源清查完整数据,设计不同大小的样地样本量(m1)和遥感辅助数据样本量(m2),模拟小样本量、遥感辅助数据非全覆盖情形,引入传统基于模型(CMB)和基于设计(DB)的统计推断方法作为比较,探究混合估计量(Hybrid估计量)的推断效率及其对样本量的响应规律,同时基于Hybrid估计量的方差分析,从方差组分变化规律及公式联系上揭示Hybrid估计量与CMB估计量的数学关联。结果: 1) 当Hybrid估计量对辅助数据的抽样强度为100%时,总方差等于模型方差,与CMB估计量的推断结果一致。2) 当样地样本S1完整时,基于模型方法计算的总体方差仅为基于设计方法计算结果的51.95%,推断精度提升2.04%。3) Hybrid估计量推断研究区AGB的总体参数时,若样本量m1保持一致,Hybrid估计量在m2约为12 800(0.127%)后推断精度基本稳定,推断精度与样地、辅助数据样本量呈倒J形的非线性关系。考虑到调查成本和结果稳定性,研究认为AGB总体参数推断的最佳性价比样本量约为
中图分类号:
黄柳源,郑炎,程欣杰,曾伟生,徐晴,侯正阳. 面向非全覆盖遥感辅助数据的森林地上生物量估算[J]. 林业科学, 2025, 61(9): 22-38.
Liuyuan Huang,Yan Zheng,Xinjie Cheng,Weisheng Zeng,Qing Xu,Zhengyang Hou. Estimation of Forest Aboveground Biomass Based on Non-Wall-to-Wall Remote Sensing Auxiliary Data[J]. Scientia Silvae Sinicae, 2025, 61(9): 22-38.
表1
各样地林分调查因子统计"
林分调查因子 Stand survey factors | 平均值 Mean | 标准差 Standard deviation | 最大值 Max. | 最小值 Min. | 变异系数 Coefficient of variation (%) |
平均胸径Average DBH/cm | 12.24 | 7.42 | 29.10 | 0 | 60.62 |
平均树高Average height/m | 11.68 | 5.98 | 22.40 | 0 | 51.20 |
平均年龄Average age/a | 75 | 45 | 185 | 0 | 60 |
森林地上生物量Forest AGB/(t·hm?2) | 64.11 | 49.40 | 236.18 | 0 | 77.06 |
林分密度Stand density/(trees·hm?2) | 850.17 | 710.70 | 4 533.33 | 0 | 83.59 |
林分蓄积Stand volume/(m3·hm?2) | 89.21 | 68.46 | 304.40 | 0 | 76.74 |
表2
主要树种地上生物量模型①"
树种 Tree species | 公式 Formula | 参考文献 References |
落叶松Larix gmelinii | ||
白桦Betula platyphylla | ||
榆树Ulmus pumila | ||
其他硬阔Other hard broad-leaved | ||
其他软阔Other soft broad-leaved |
图1
研究区遥感影像及全与非全覆盖示意 A代表研究区遥感影像,B代表全覆盖遥感数据,C代表非全覆盖遥感数据(传感器故障),D代表非全覆盖遥感数据(云遮蔽)。Figure A represents the remote sensing image of the study area. Figure B represents wall-to-wall remote sensing data. Figure C represents non-wall-to-wall remote sensing data (sensor failure). Figure D represents non-wall-to-wall remote sensing data (cloud cover)."
表3
小样本与非全覆盖数据集①"
样本类型 Sample type | 样本量 Sample size | 说明 Description |
样地样本S1 Sample S1 from the plots | m1=20(21%)、40(41%)、 60(62%)、80(83%)、97(100%) | 通过不放回的简单随机抽样,抽取不同年度组的样地样本,并结合蒙特卡洛模拟 Through simple random sampling without replacement, sample plots from different annual groups were selected, and Monte Carlo simulation was performed |
非全覆盖遥感辅助数据样本S2 Sample S2 from remote sensing auxiliary data | m2=97(0.001%)、200(0.002%)、400(0.004%)、800(0.008%)、 1 600(0.016%)、3 200(0.032%)、 6 400(0.064%)、12 800(0.127%)、 25 600(0.255%)、51 200(0.509%)、102 400(1.019%)、10 049 221(100%) |
表5
基于设计和基于模型统计推断的推断结果①"
方法 Method | 估计量 Estimator | 遥感数据 Remote sensing data | |||
基于设计 Based on design | DB估计量 Design-based estimator | NA | 64.11 | 25.16 | 7.82 |
基于模型 Based on model | CMB估计量 Conventional model-based estimator | Sentinel-2 (全覆盖 Wall-to-wall) | 62.41* | 13.02* | 5.78 |
Hybrid估计量 Hybrid estimator | Sentinel-2 (全覆盖 Wall-to-wall) | 62.41* | 13.02* | 5.78 | |
Sentinel-2 [非全覆盖 Non-wall-to-wall, m2=12 800 (0.127%)] | 62.40* | 13.11* | 5.80 |
曹 军, 张加龙, 肖庆琳, 等. 基于随机森林和蒙特卡洛的高山松地上碳储量估测及不确定性分析. 林业科学研究, 2023, 36 (5): 131- 139.
doi: 10.12403/j.1001-1498.20220603 |
|
Cao J, Zhang J L, Xiao Q L, et al. Estimation and uncertainty analysis of aboveground carbon storage of Pinus densata based on random forests and Monte Carlo. Forest Research, 2023, 36 (5): 131- 139.
doi: 10.12403/j.1001-1498.20220603 |
|
陈新云, 党永峰, 刘承芳. 森林资源连续清查存在的问题及对策措施. 辽宁林业科技, 2011, (5): 39- 41.
doi: 10.3969/j.issn.1001-1714.2011.05.013 |
|
Chen X Y, Dang Y F, Liu C F. Problems and countermeasures in continuous forest inventory. Journal of Liaoning Forestry Science & Technology, 2011, (5): 39- 41.
doi: 10.3969/j.issn.1001-1714.2011.05.013 |
|
韩喜越, 王晓迪, 崔晨曦, 等. 内蒙古大兴安岭根河林业局主要可燃物类型地表细小可燃物特征及其影响因素. 中南林业科技大学学报, 2023, 43 (12): 94- 103. | |
Han X Y, Wang X D, Cui C X, et al. Characteristics and influencing factors of surface fine fuels of main fuel types in Genhe Forestry Bureau, Daxing’an Mountains of Inner Mongolia. Journal of Central South University of Forestry & Technology, 2023, 43 (12): 94- 103. | |
李海奎, 雷渊才. 2010. 中国森林植被生物量和碳储量评估. 北京: 中国林业出版社. | |
Li H K, Lei Y C. 2010. Estimation and evaluation of forest biomass carbon storage in China. Beijing: China Forestry Publishing House. [in Chinese] | |
李泓莹, 董灵波, 刘兆刚. 基于系统动力学的帽儿山实验林场可持续发展水平预测. 森林工程, 2023, 39 (1): 11- 20.
doi: 10.3969/j.issn.1006-8023.2023.01.002 |
|
Li H Y, Dong L B, Liu Z G. Prediction of sustainable development level of Maoershan forest farm based on system dynamics. Forest Engineering, 2023, 39 (1): 11- 20.
doi: 10.3969/j.issn.1006-8023.2023.01.002 |
|
饶月明, 刘凯军, 黄华国, 等. 基于INFORM模型与GEE的根河火烧迹地冠层含水量反演研究. 中南林业科技大学学报, 2021, 41 (1): 80- 91. | |
Rao Y M, Liu K J, Huang H G, et al. Inversion of canopy water content of fire scars in Genhe county based on INFORM model and Google Earth Engine. Journal of Central South University of Forestry & Technology, 2021, 41 (1): 80- 91. | |
唐小平, 陈雪峰, 翁国庆, 等. 2010. 森林资源规划设计调查技术规程 (GB/T 26424—2010). 北京: 中国标准出版社. | |
Tang X P, Chen X F, Weng G Q, et al. 2010. Technical regulations for inventory for forest management planning and design (GB/T 26424—2010). Beijing: Standards Press of China. [in Chinese] | |
王春枝, 申哲星, 杨倬镔. Weibull小样本失效数据的贝叶斯可靠性分析. 数学的实践与认识, 2023, 53 (10): 151- 159. | |
Wang C Z, Shen Z X, Yang Z B. Bayes reliability analysis of Weibull small sample failure data. Mathematics in Practice and Theory, 2023, 53 (10): 151- 159. | |
吴 恒, 吕大伟, 汪圣云, 等. “双碳” 战略背景下的多尺度森林碳储量年度监测研究进展与思考. 世界林业研究, 2024, 37 (1): 59- 64. | |
Wu H, Lyu D W, Wang S Y, et al. Research progress in multi-scale annual monitoring of forest carbon storage under the background of “dual carbon” goal. World Forestry Research, 2024, 37 (1): 59- 64. | |
闫国东, 左雪漫, 陈 瑾, 等. 基于多特征优选的 Sentinel-2遥感影像林分类型分类. 森林工程, 2023, 39 (3): 12- 20.
doi: 10.3969/j.issn.1006-8023.2023.03.002 |
|
Yan G D, Zuo X M, Chen J, et al. Classification of forest stand types in Sentinel-2 remote sensing images based on multifeature optimization. Forest Engineering, 2023, 39 (3): 12- 20.
doi: 10.3969/j.issn.1006-8023.2023.03.002 |
|
张建中. 蒙特卡洛方法(Ⅰ). 数学的实践与认识, 1974, (1): 28- 40. | |
Zhang J Z. Monte Carlo method(Ⅰ). Mathematics in Practice and Theory, 1974, (1): 28- 40. | |
曾伟生. 森林资源调查监测数据的确定性和时效性探讨. 中南林业调查规划, 2023, 42 (2): 1- 6. | |
Zeng W S. Discussion on certainty and timeliness of forest inventory and monitoring data. Central South Forest Inventory and Planning, 2023, 42 (2): 1- 6. | |
曾伟生, 陈新云, 姚顺彬, 等. 2024. 主要树种立木生物量模型与碳计量参数 (GB/T 43648—2024). 北京: 中国标准出版社. | |
Zeng W S, Chen X Y, Yao S B, et al. 2024. Tree biomass models and related parameters to carbon accounting for major tree species (GB/T 43648—2024). Beijing: Standards Press of China. [in Chinese] | |
曾伟生, 黄国胜, 党永峰, 等. 全国森林资源宏观监测的抽样设计与估计方法探索. 林业资源管理, 2016, (3): 1- 6. | |
Zeng W S, Huang G S, Dang Y F, et al. Discussion on sampling design and estimation methods of national forest resources macro-monitoring. Forest Resources Management, 2016, (3): 1- 6. | |
张 雪. 2018. 根河林业局森林资源变化及其发展对策. 呼和浩特: 内蒙古农业大学. | |
Zhang X. 2018. Study on forest resources change and development countermeasures of Genhe Forest Bureau. Hohhot: Inner Mongolia Agricultural University. [in Chinese] | |
赵 旭, 尹跃虎. 根河林业局1990—2015年森林碳储量变化分析. 内蒙古林业调查设计, 2022, 45 (6): 75- 81. | |
Zhao X, Yin Y H. Change analysis of forest carbon storage in Genhe Forestry Bureau from 1990 to 2015. Inner Mongolia Forestry Investigation and Design, 2022, 45 (6): 75- 81. | |
朱长明, 沈占锋, 骆剑承, 等. 基于MODIS数据的Landsat-7 SLC-off影像修复方法研究. 测绘学报, 2010, 39 (3): 251- 256. | |
Zhu C M, Shen Z F, Luo J C, et al. Research on Landsat-7 SLC-off image restoration method based on MODIS09 data. Acta Geodaetica et Cartographica Sinica, 2010, 39 (3): 251- 256. | |
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19 (6): 716- 723.
doi: 10.1109/TAC.1974.1100705 |
|
Birth G S, McVey G R. Measuring the color of growing turf with a reflectance Spectrophotometer. Agronomy Journal, 1968, 60 (6): 640- 643.
doi: 10.2134/agronj1968.00021962006000060016x |
|
Carroll R J, Ruppert D. 1988. Transformation and weighting in regression. New York: Chapman and Hall. | |
Cassel C, S Arndal C, Wretman J H A. 1977. Foundations of inference in survey sampling. New York: Wiley. | |
Chambers R L, Clark R G. 2012. An introduction to model-based survey sampling with applications. Oxford: Oxford University Press. | |
Cheng X J, Hou Z Y, Kangas A, et al. 2025. Alleviating small sample problem in continuous forest monitoring with remote sensing-assisted Copulas. Ecological indicators. 171: 113132. | |
Eggleston H S, Buendia L, Miwa K, et al. 2006.2006 IPCC guidelines for national greenhouse gas inventories. V. 4. Agriculture, Forestry and Other Land Use. | |
Chave J, Condit R, Aguilar S, et al. 2004. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 359(1443): 409−420. | |
Gao B C. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996, 58 (3): 257- 266.
doi: 10.1016/S0034-4257(96)00067-3 |
|
Gitelson A A, Viña A, Ciganda V, et al. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 2005, 32 (8): L08403. | |
Goward S N, Huemmrich K F. Vegetation canopy PAR absorptance and the normalized difference vegetation index: an assessment using the SAIL model. Remote Sensing of Environment, 1992, 39 (2): 119- 140.
doi: 10.1016/0034-4257(92)90131-3 |
|
Haralick R M, Shanmugam K, Dinstein I. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6): 610-621. | |
Hansen M H, Madow W G, Tepping B J. An evaluation of model-dependent and probability-sampling inferences in sample surveys: rejoinder. Journal of the American Statistical Association, 1983, 78 (384): 805- 807. | |
Hardisky M A, Klemas V, Smart R M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of spartina alterniflora canopies. Photogrammetric Engineering & Remote Sensing, 1983, 49 (1): 77- 83. | |
Hou Z Y, McRoberts R E, Ståhl G, et al. 2018. How much can natural resource inventory benefit from finer resolution auxiliary data? Remote Sensing of Environment, 209: 31-40. | |
Hou Z Y, Xu Q, McRoberts R E, et al. Effects of temporally external auxiliary data on model-based inference. Remote Sensing of Environment, 2017, 198, 150- 159.
doi: 10.1016/j.rse.2017.06.013 |
|
Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83 (1/2): 195- 213. | |
Kalos M H, Whitlock P A. 1986. Monte Carlo methods. New York: J. Wiley & Sons. | |
Kangas A, Maltamo M. 2006. Forest inventory: methodology and applications. Dordrecht: Springer Netherlands. | |
Kvålseth T O. Cautionary note about R2. The American Statistician, 1985, 39 (4): 279- 285. | |
MacKinnon J G, White H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 1985, 29 (3): 305- 325.
doi: 10.1016/0304-4076(85)90158-7 |
|
Lymburner L, Beggs P J, Jacobson C R. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogrammetric Engineering and Remote Sensing, 2000, 66 (2): 183- 191. | |
McRoberts R E, Chen Q, Domke G M, et al. Hybrid estimators for mean aboveground carbon per unit area. Forest Ecology and Management, 2016, 378, 44- 56.
doi: 10.1016/j.foreco.2016.07.007 |
|
McRoberts R E, Chen Q, Walters B F, et al. The effects of global positioning system receiver accuracy on airborne laser scanning-assisted estimates of aboveground biomass. Remote Sensing of Environment, 2018, 207, 42- 49.
doi: 10.1016/j.rse.2017.09.036 |
|
McRoberts R E, Moser P, Zimermann Oliveira L, et al. A general method for assessing the effects of uncertainty in individual-tree volume model predictions on large-area volume estimates with a subtropical forest illustration. Canadian Journal of Forest Research, 2015, 45 (1): 44- 51.
doi: 10.1139/cjfr-2014-0266 |
|
McRoberts R E, Næsset E, Hou Z Y, et al. 2023. How many bootstrap replications are necessary for estimating remote sensing-assisted, model-based standard errors? Remote Sensing of Environment, 288: 113455. | |
McRoberts R E, Tomppo E O, Finley A O, et al. Estimating areal means and variances of forest attributes using the k-nearest neighbors technique and satellite imagery. Remote Sensing of Environment, 2007, 111 (4): 466- 480.
doi: 10.1016/j.rse.2007.04.002 |
|
McRoberts R E, Tomppo E O, Næsset E. Advances and emerging issues in national forest inventories. Scandinavian Journal of Forest Research, 2010, 25 (4): 368- 381.
doi: 10.1080/02827581.2010.496739 |
|
Patterson P L, Healey S P, Ståhl G, et al. Statistical properties of hybrid estimators proposed for GEDI: NASA’s global ecosystem dynamics investigation. Environmental Research Letters, 2019, 14 (6): 065007.
doi: 10.1088/1748-9326/ab18df |
|
Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48 (2): 119- 126.
doi: 10.1016/0034-4257(94)90134-1 |
|
Rouse J W, Haas R H, Schell J A, et al. 1974. Monitoring vegetation systems in the great plains with ERTS. New York: NASA Special’ Publications. | |
Royall R M, Herson J. Robust estimation in finite populations II: stratification on a size variable. Journal of the American Statistical Association, 1973, 68 (344): 890- 893.
doi: 10.1080/01621459.1973.10481441 |
|
Saarela S, Holm S, Healey S P, et al. Comparing frameworks for biomass prediction for the global ecosystem dynamics investigation. Remote Sensing of Environment, 2022, 278, 113074.
doi: 10.1016/j.rse.2022.113074 |
|
Saarela S, Schnell S, Tuominen S, et al. Effects of positional errors in model-assisted and model-based estimation of growing stock volume. Remote Sensing of Environment, 2016, 172, 101- 108.
doi: 10.1016/j.rse.2015.11.002 |
|
Särndal C E, Swensson B, Wretman J. 1992. Model assisted survey sampling. New York: Springer New York, 695. | |
Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81 (2/3): 337- 354. | |
Ståhl G, Holm S, Gregoire T G, et al. Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway. Canadian Journal of Forest Research, 2011, 41 (1): 96- 107.
doi: 10.1139/X10-161 |
|
Ståhl G, Saarela S, Schnell S, et al. Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation. Forest Ecosystems, 2016, 3 (2): 153- 163. | |
Sun H, Wang Q, Wang G X, et al. Optimizing kNN for mapping vegetation cover of arid and semi-arid areas using landsat images. Remote Sensing, 2018, 10 (8): 1248.
doi: 10.3390/rs10081248 |
|
Valliant R, Dorfman A H, Royall R M, et al. Finite population sampling and inference: a prediction approach. Journal of the American Statistical Association, 2002, 97 (457): 357- 358.
doi: 10.1198/jasa.2002.s453 |
|
Willett J B, Singer J D. Another cautionary note about R2: its use in weighted least-squares regression analysis. The American Statistician, 1988, 42 (3): 236- 238. | |
Williams B K, Brown E D, Mccrea R, et al. Sampling and analysis frameworks for inference in ecology. Methods in Ecology and Evolution, 2019, 10 (11): 1832- 1842.
doi: 10.1111/2041-210X.13279 |
|
Wu W C, De Pauw E, Helldén U. Assessing woody biomass in African tropical savannahs by multiscale remote sensing. International Journal of Remote Sensing, 2013, 34 (13): 4525- 4549.
doi: 10.1080/01431161.2013.777487 |
|
Zheng Y, Hou Z Y, Ståhl G, et al. 2024. Nexus of certain model-based estimators in remote sensing forest inventory. Forest ecosystems. 11: 100245. |
[1] | 熊晓燕,李彩霞,柴国奇,陈龙,贾翔,雷令婷,张晓丽. 联合UAV-LiDAR和GEDI数据的区域森林地上生物量估算[J]. 林业科学, 2025, 61(8): 142-153. |
[2] | 杨菲菲,张王菲,赵磊,赵含,姬永杰,王梦金. 基于GF-1数据的二阶段遥感特征优选与森林地上生物量反演模型[J]. 林业科学, 2025, 61(4): 9-19. |
[3] | 齐元浩,侯正阳,刘太训,徐晴. 模型假设对基于模型的森林蓄积量估算的影响[J]. 林业科学, 2024, 60(9): 111-123. |
[4] | 梅安琪,侯正阳,徐晴,陈芳婷,齐元浩,贾东瑾. 基于耦合推断的时间外延性辅助数据偏倚修正——以森林蓄积量估计为例[J]. 林业科学, 2024, 60(8): 79-94. |
[5] | 李春干,李振. 机载激光雷达大区域亚热带森林参数估测的普适性模型式[J]. 林业科学, 2021, 57(10): 23-35. |
[6] | 丁家祺,黄文丽,刘迎春,胡杨. 基于机器学习和多源数据的湘西北森林地上生物量估测[J]. 林业科学, 2021, 57(10): 36-48. |
[7] | 李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5): 180-187. |
[8] | 庞勇, 蒙诗栎, 李增元. 机载高分辨率遥感影像的傅氏纹理因子估测温带森林地上生物量[J]. 林业科学, 2017, 53(3): 94-104. |
[9] | 李兰, 陈尔学, 李增元, 任冲, 赵磊, 谷鑫志. 森林地上生物量的多基线InSAR层析估测方法[J]. 林业科学, 2017, 53(11): 85-93. |
[10] | 冯琦, 陈尔学, 李增元, 李兰, 赵磊. 基于机载P-波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3): 10-22. |
[11] | 郭云, 李增元, 陈尔学, 田昕, 凌飞龙. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测[J]. 林业科学, 2015, 51(1): 140-149. |
[12] | 李文梅, 陈尔学, 李增元, 赵磊. 森林地上生物量的极化干涉SAR相干层析估测方法[J]. 林业科学, 2014, 50(2): 70-77. |
[13] | 贺鹏;张会儒;雷相东;徐广;高祥. 基于地统计学的森林地上生物量估计[J]. , 2013, 49(5): 101-109. |
[14] | 刘鹏举 黄水生 谢阳生 侯瑞霞 唐小明. 基于边界锁定的二类调查方法研究[J]. , 2006, 42(zk): 51-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||