林业科学 ›› 2025, Vol. 61 ›› Issue (7): 83-93.doi: 10.11707/j.1001-7488.LYKX20250196
• 综合评述 • 上一篇
收稿日期:
2025-04-03
接受日期:
2025-06-20
出版日期:
2025-07-20
发布日期:
2025-07-25
通讯作者:
方升佐
E-mail:fangsz@njfu.edu.cn
基金资助:
Feiran Chen1,2,3,Zijie Zhang2,Shengzuo Fang1,2,3,*()
Received:
2025-04-03
Accepted:
2025-06-20
Online:
2025-07-20
Published:
2025-07-25
Contact:
Shengzuo Fang
E-mail:fangsz@njfu.edu.cn
摘要:
植物抗逆性对农林业生产具有重要意义。传统抗逆性改良方法存在育种周期长、效率低等局限性,亟需开发更高效精准的新技术和新方法以增强植物抗逆性,推动农林业可持续发展。近年来,随着纳米技术在农林生态领域的集成创新与应用,纳米材料(NMs)在提升植物抗逆性方面的作用逐渐凸显,为应对气候变化提供了新的机遇。本研究基于NMs与植物抗逆性研究现状,重点从以下3方面系统论述NMs提升植物抗逆性的研究进展及其在林业中的应用潜力和挑战:1) NMs增强植物对非生物胁迫(盐、干旱、重金属胁迫等)和生物胁迫(病虫害)的抵御能力;2) NMs提升植物抗逆性的作用机制;3) NMs在提高林木抗逆性中的探索与实践。总体而言,NMs因其独特的形态结构和高反应活性,在促进植物生长及缓解生物和非生物胁迫方面展现出巨大应用潜力,且纳米技术已在农作物品种改良和栽培实践中取得初步成效,特别是在非生物胁迫下提高作物产量方面具有广阔应用前景。然而,由于林业经营周期较长,NMs在提高林木抗逆性、促进产量增长以及助力森林生态系统修复方面的潜力有待进一步挖掘,当前研究仍面临NMs剂量依赖性效应、潜在生态风险及其田间应用效率等关键挑战。未来,需重点聚焦绿色合成技术开发、多组学机制解析、智能响应材料设计及多学科协同创新,同时构建标准化风险评估体系,推动纳米技术从实验室研究向规模化应用迈进,为林业可持续发展提供强有力的科技支撑。
中图分类号:
陈菲然,张子洁,方升佐. 纳米材料提升植物抗逆性的研究进展与林业应用展望[J]. 林业科学, 2025, 61(7): 83-93.
Feiran Chen,Zijie Zhang,Shengzuo Fang. Recent Advances in Nanomaterials Enhancing Plant Stress Resistance and Their Application Prospects in Forestry[J]. Scientia Silvae Sinicae, 2025, 61(7): 83-93.
杜仲阳, 杨 泽, 梁梦静, 等. 纳米硒(SeNPs)缓解烟草幼苗铅胁迫和促生效应. 生物技术通报, 2024, 40 (7): 183- 196. | |
Du Z Y, Yang Z, Liang M J, et al. Effect of nano-selenium(SeNPs)in alleviating lead stress and promoting growth of tobacco seedlings. Biotechnology Bulletin, 2024, 40 (7): 183- 196. | |
孙 敏, 郝 毅, 许鑫鑫, 等. 工程纳米材料抵抗作物病害的研究进展. 生态与农村环境学报, 2024, 40 (2): 157- 167. | |
Sun M, Hao Y, Xu X X, et al. Research progress of engineered nanomaterials against crop diseases. Journal of Ecology and Rural Environment, 2024, 40 (2): 157- 167. | |
汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响. 植物生理学报, 2019, 53 (6): 933- 942. | |
Wang Y J, Chen R Y, Liu H C, et al. Applications of nanomaterials in agriculture and its effects on the growth and development of plants. Plant Physiology Journal, 2019, 53 (6): 933- 942. | |
朱立祺, 陈菲然, 陶梦娜, 等. 人工纳米材料增强植物耐盐性的机理研究. 环境科学研究, 2022, 35 (8): 1759- 1768. | |
Zhu L Q, Chen F R, Tao M N, et al. Mechanisms of plant salt tolerance promoted by nanomaterials. Research of Environmental Sciences, 2022, 35 (8): 1759- 1768. | |
Borgatta J, Shen Y, Tamez C, et al. Influence of CuO nanoparticle aspect ratio and surface charge on disease suppression in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 2023, 71 (25): 9644- 9655.
doi: 10.1021/acs.jafc.2c09153 |
|
Cao X, Chen X, Liu E, et al. Metalloid nanomaterials alleviate arsenic phytotoxicity and grain accumulation in rice: mechanisms of abiotic stress tolerance and rhizosphere behavior. Environmental Science & Technology, 2025, 59, 6049- 6060. | |
Cao Z, Ma X, Lv D, et al. Synthesis of chitin nanocrystals supported Zn2+ with high activity against tobacco mosaic virus. International Journal of Biological Macromolecules, 2023a, 250, 12616. | |
Cao X, Chen X, Liu Y, et al. Lanthanum silicate nanomaterials enhance sheath blight resistance in rice: mechanisms of action and soil health evaluation. ACS Nano, 2023b, 17 (16): 15821- 15835.
doi: 10.1021/acsnano.3c03701 |
|
Chen L, Peng Y, Zhu L, et al. CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. Chemosphere, 2022a, 299, 134474.
doi: 10.1016/j.chemosphere.2022.134474 |
|
Chen F, Zhu L, Tang J, et al. Nanomaterial-modulated cellular sodium extrusion and vacuolar sequestration for salt tolerance. Environmental Science: Nano, 2022b, 9, 4018- 4026.
doi: 10.1039/D2EN00623E |
|
Cheng B, Ding Z, Yue L, et al. Carbon dots enhanced cold tolerance of lettuce (Lactuca sativa L.): scavenging reactive oxygen species, modulating hormones and up-regulating gene expression. Environmental Science: Nano, 2023, 10 (10): 2849- 2860.
doi: 10.1039/D3EN00257H |
|
Chen X, Xia Q, Wang Z, et al. Effects of foliar dressing with chemical nano-selenium and Na2SeO3 on the antioxidant system and accumulation of Se and bioactive components in Cyclocarya paliurus (Sweet Tea Tree). International Journal of Molecular Sciences, 2024, 25 (13): 7433.
doi: 10.3390/ijms25137433 |
|
Choudhary R C, Kumaraswamy R V, Kumari S, et al. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L. ). Scientific Reports, 2017, 7, 9754.
doi: 10.1038/s41598-017-08571-0 |
|
Dimkpa C O, Singh U, Bindraban P S, et al. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 2019, 688, 926- 934.
doi: 10.1016/j.scitotenv.2019.06.392 |
|
Ding Y, Xiao Z, Chen F, Yue L, et al. A mesoporous silica nanocarrier pesticide delivery system for loading acetamiprid: effectively manage aphids and reduce plant pesticide residue. Science of the Total Environment, 2023, 863, 160900.
doi: 10.1016/j.scitotenv.2022.160900 |
|
Memari-Tabrizi EF, Yousefpour-Dokhanieh A, Babashpour-Asl M, 2021. Foliar-applied silicon nanoparticles mitigate cadmium stress through physio-chemical changes to improve growth, antioxidant capacity, and essential oil profile of summer savory (Satureja hortensis L. ). Plant Physiology and Biochemistry, 165: 71–79. | |
Gohari G, Panahirad S, Sepehri N, et al. Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. Environmental Science and Pollution Research, 2021, 28, 42877- 42890.
doi: 10.1007/s11356-021-13794-w |
|
GomesD G, Sanada K, Pieretti J C, et al. Nanoencapsulation boosts the copper-induced defense responses of a susceptible Coffea arabica cultivar against Hemileia vastatrix. Antibiotics, 2023, 12, 249.
doi: 10.3390/antibiotics12020249 |
|
Goyal V, Rani D, Ritika Mehrotra S, et al. Unlocking the potential of nano-enabled precision agriculture for efficient and sustainable farming. Plants, 2023, 12, 3744.
doi: 10.3390/plants12213744 |
|
Javan M, Selahvarzi Y, Sayyad-Amin P, et al. Potential application of TiO2 nanoparticles to improve the nutritional quality of strawberry cv. Camarosa under drought stress. Scientia Horticulturae, 2024, 330, 113055.
doi: 10.1016/j.scienta.2024.113055 |
|
Ji Y, Yue L, Cao X, et al. Carbon dots promoted soybean photosynthesis and amino acid biosynthesis under drought stress: reactive oxygen species scavenging and nitrogen metabolism. Science of the Total Environment, 2023, 856, 159125.
doi: 10.1016/j.scitotenv.2022.159125 |
|
Liao H, Wang J, Chen F, et al. Salicylic acid functionalized chitosan nanocomposite increases bioactive components and insect resistance of Agastache rugosa. Pesticide Biochemistry and Physiology, 2024, 205, 106131.
doi: 10.1016/j.pestbp.2024.106131 |
|
Liao Y Y, Pereira J, Huang Z, et al. Potential of novel magnesium nanomaterials to manage bacterial spot disease of tomato in greenhouse and field conditions. Plants, 2023, 12, 1832.
doi: 10.3390/plants12091832 |
|
Liu J, Gu J, Hu J, et al. Use of Mn3O4 nanozyme to improve cotton salt tolerance. Plant Biotechnology Journal, 2023, 21 (10): 1935- 1937.
doi: 10.1111/pbi.14145 |
|
Liu Y, Cao X, Yue L, et al. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 2022, 299, 118900.
doi: 10.1016/j.envpol.2022.118900 |
|
Li Z, Zhu L, Zhao F, et al. 2022. Plant salinity stress response and nano-enabled plant salt tolerance. Frontiers in Plant Science. 13: 843994. | |
Lu L, Huang M, Huang Y, et al. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science: Nano, 2020, 7 (6): 1692- 1703.
doi: 10.1039/D0EN00214C |
|
Malandrakis A A, Kavroulakis N, Chrysikopoulos C V. 2022. Metal nanoparticles against fungicide resistance: alternatives or partners? Pest Management Science, 78(10): 3953–3956. | |
Mariyam S, Upadhyay S K, Chakraborty K, et al. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-a review. Science of the Total Environment, 2024, 912, 169097.
doi: 10.1016/j.scitotenv.2023.169097 |
|
Noor R, Yasmin H, Ilyas N, et al. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere, 2022, 292, 133201.
doi: 10.1016/j.chemosphere.2021.133201 |
|
Panahirad S, Dadpour M, Gohari G, et al. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticle: a promising stress-protecting agent against cadmium stress in grapevine (Vitis vinifera cv. Sultana). Plant Physiology and Biochemistry, 2023, 197, 107653.
doi: 10.1016/j.plaphy.2023.107653 |
|
Potter M, Deakin J, Cartwright A, et al. Absence of nanoparticle-induced drought tolerance in nutrient sufficient wheat seedlings. Environmental Science and Technology, 2021, 55 (20): 13541- 13550.
doi: 10.1021/acs.est.1c00453 |
|
Pulizzi F. Nano in the future of crops. Nature Nanotechnology, 2019, 14 (6): 507- 507.
doi: 10.1038/s41565-019-0475-1 |
|
Qi J, Li Y, Yao X, et al. Rational design of ROS scavenging and fluorescent gold nanoparticles to deliver siRNA to improve plant resistance to Pseudomonas syringae. Journal of Nanobiotechnology, 2024, 22, 446.
doi: 10.1186/s12951-024-02733-9 |
|
Rossi L, Zhang W, Ma X. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 2017, 229, 132- 138.
doi: 10.1016/j.envpol.2017.05.083 |
|
Sarkar R D, Kalita M C. Green synthesized Se nanoparticle-mediated alleviation of salt stress in field mustard, TS-36 variety. Journal of Biotechnology, 2022, 359, 95- 107.
doi: 10.1016/j.jbiotec.2022.09.013 |
|
Sarraf M, Vishwakarma K, Kumar V, et al. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms. Plants, 2022, 11, 316.
doi: 10.3390/plants11030316 |
|
Shen Y, Borgatta J, Ma C, et al. Copper nanomaterial morphology and composition control foliar transfer through the cuticle and mediate resistance to root fungal disease in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 2020, 68 (41): 11327- 11338.
doi: 10.1021/acs.jafc.0c04546 |
|
Shen M, Liu S, Jiang C, et al. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco-Environment & Health, 2023, 2, 161- 175. | |
Singh A, Rajput V D, Lalotra S, et al. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. Environmental Geochemistry and Health, 2024, 46, 148.
doi: 10.1007/s10653-024-01921-8 |
|
Singh A, Rajput V D, Sharma R, et al. Salinity stress and nanoparticles: insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, 2023, 235, 116585.
doi: 10.1016/j.envres.2023.116585 |
|
Singh P, Arif Y, Siddiqui H, et al. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicology and Environmental Safety, 2021a, 213, 112020.
doi: 10.1016/j.ecoenv.2021.112020 |
|
Singh D, Sillu D, Kumar A, et al. Dual nanozyme characteristics of iron oxide nanoparticles alleviate salinity stress and promote the growth of an agroforestry tree, Eucalyptus tereticornis Sm. Environmental Science: Nano, 2021b, 8 (5): 1308- 1325.
doi: 10.1039/D1EN00040C |
|
Wang C, Ji Y, Cao X, et al. Carbon dots improve nitrogen bioavailability to promote the growth and nutritional quality of soybeans under drought stress. ACS Nano, 2022a, 16 (8): 12415- 12424.
doi: 10.1021/acsnano.2c03591 |
|
Wang C, Yang H, Yue L, et al. Physiological and molecular level understanding of advanced carbon dots to enhance maize drought tolerance: modulation of photosynthesis and signaling molecules. Environmental Science: Nano, 2022b, 9 (10): 3821- 3832.
doi: 10.1039/D2EN00176D |
|
Wang C, Yao Y, Yue L, et al. Regulation mechanisms of nitrogen-doped carbon dots in enhanced maize photosynthesis under drought stress. ACS Agricultural Science and Technology, 2023a, 3 (2): 181- 189.
doi: 10.1021/acsagscitech.2c00286 |
|
Wang J, Cao X, Wang C, et al. Transcriptomics and metabolomics reveal the mechanisms of enhanced constitutive resistance in rice (Oryza Sativa L. ) by silica nanomaterials. Environmental Science: Nano, 2023b, 10 (10): 2831- 2848.
doi: 10.1039/D3EN00504F |
|
Wang X, Xie H, Wang Z, et al. Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environmental Science: Nano, 2019, 6 (1): 75- 84.
doi: 10.1039/C8EN00902C |
|
Wang Z, Zhu W, Chen F, et al. Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Science of the Total Environment, 2021, 778, 146378.
doi: 10.1016/j.scitotenv.2021.146378 |
|
Wu H, Li Z. Recent advances in nano-enabled agriculture for improving plant performance. The Crop Journal, 2022, 10, 1- 12.
doi: 10.1016/j.cj.2021.06.002 |
|
Wu H, Tito N, Giraldo J P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 2017, 11 (11): 11283- 11297.
doi: 10.1021/acsnano.7b05723 |
|
Xiao Z, Zhao C, Fan N, et al. Boosting rice resilience: role of biogenic nanosilica in reducing arsenic toxicity and defending against herbivore. Environmental Science & Technology, 2025, 59, 408- 418. | |
Yang H, Wang C, Chen F, et al. Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Science of the Total Environment, 2022, 809, 151105.
doi: 10.1016/j.scitotenv.2021.151105 |
|
Yoon H Y, Lee J G, Esposti L D, et al. Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: toward a multifunctional nanofertilizer. ACS Omega, 2020, 5 (12): 6598- 6610.
doi: 10.1021/acsomega.9b04354 |
|
Yue L, Xie B, Cao X, et al. The mechanism of manganese ferrite nanomaterials promoting drought resistance in rice. Nanomaterials, 2023, 13, 1484.
doi: 10.3390/nano13091484 |
|
Zafar S, Hasnain Z, Danish S, et al. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC Plant Biology, 2024, 24, 35.
doi: 10.1186/s12870-024-04720-6 |
|
Zahedi S M, Abolhassani M, Hadian-Deljou M, et al. Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs): a new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera L. cv Sultana). Plant Stress, 2023, 7, 100128.
doi: 10.1016/j.stress.2022.100128 |
|
Zhang Z, Fang J, Jin H, et al. Application of oxide nanoparticles mitigates the salt-induced effects on photosynthesis and reduces salt injury in Cyclocarya paliurus. Science of the Total Environment, 2024a, 954, 176333.
doi: 10.1016/j.scitotenv.2024.176333 |
|
Zhang Z, Jin H, Fang J, et al. Effects of nanoparticle application on Cyclocarya paliurus growth: mechanisms underlying the particle- and dose-dependent response. Industrial Crops and Products, 2024b, 209, 117942.
doi: 10.1016/j.indcrop.2023.117942 |
|
Zhang X, Li X, Chen F, et al. Selenium nanomaterials enhance the nutrients and functional components of Fuding Dabai tea. Nanomaterials, 2024c, 14, 681.
doi: 10.3390/nano14080681 |
|
Zhao L, Lu L, Wang A, et al. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural Food Chemistry, 2020, 68 (7): 1935- 1947.
doi: 10.1021/acs.jafc.9b06615 |
|
Zhou H, Wu H, Zhang F, et al. Molecular basis of cerium oxide nanoparticle enhancement of rice salt tolerance and yield. Environmental Science: Nano, 2021, 8 (11): 3294- 3311.
doi: 10.1039/D1EN00390A |
|
Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry, 2021, 160, 257- 268.
doi: 10.1016/j.plaphy.2021.01.028 |
[1] | 王亚飞,刘洋,王凯,丁晓菲,续可心,贾黎明,席本野. 水氮耦合处理对毛白杨纸浆林生长及土壤水养特征影响[J]. 林业科学, 2025, 61(5): 85-97. |
[2] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
[3] | 林文树, 穆丹, 王丽平, 邵立郡, 吴金卓. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 2016, 52(5): 17-25. |
[4] | 王占军;陈金慧;施季森. 植物干细胞中WUS/CLV反馈调控机制的研究进展[J]. 林业科学, 2011, 47(4): 159-165. |
[5] | 黄承标;曹继钊;吴庆标;韦家国;蒙跃环;李保平. 秃杉林与杉木连栽林的土壤理化性质及林木生长量比较[J]. 林业科学, 2010, 46(4): 1-7. |
[6] | 丁兴萃. 覆盖栽培早竹开花的激素机制研究[J]. 林业科学, 2007, 43(7): 10-15. |
[7] | 张志东 黄选瑞 张玉珍 聂犇 胡玉山. 张北县退耕还林对粮食生产的影响分析[J]. 林业科学, 2004, 40(5): 10-15. |
[8] | 陈立新 杨承栋. 落叶松人工林土壤磷形态、磷酸酶活性演变与林木生长关系的研究[J]. 林业科学, 2004, 40(3): 12-18. |
[9] | 王力 邵明安 李裕元. 陕北黄土高原人工刺槐林生长与土壤干化的关系研究[J]. 林业科学, 2004, 40(1): 84-91. |
[10] | 陈辉. 化学信息素对小蠹虫入侵危害的调控[J]. 林业科学, 2003, 39(6): 154-158. |
[11] | 杨承栋 焦如珍 孙启武 夏良放 JanetDutch. 杉木幼龄林叶片营养元素含量与林木生长的相关性[J]. 林业科学, 2002, 38(6): 24-29. |
[12] | 吴晓芙 胡曰利. 刚果12号桉无性系人工林养分曲线[J]. 林业科学, 2002, 38(5): 24-30. |
[13] | 王克勤 王百田 王斌瑞 高海平. 集水造林不同密度林分生长研究[J]. 林业科学, 2002, 38(2): 54-60. |
[14] | 杨志敏 赵天锡 陈章水. 辽西半干旱地区昭林六号杨人工林密度及经济效益的研究[J]. , 1992, 28(3): 271-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||