李建华, 岳晋军, 李海涛. 2012. 毛竹林经济和生态公益价值综合评价. 现代园艺, 18: 6-7. Li J H, Yue J J, Li H T. 2012. Evaluation of economic and ecosystem services of moso bamboo stands. Contemporary Horticulture, 18: 6-7. [in Chinese] 刘 丽, 陈骄羽, 邵明侠, 等. 2021. 毛竹PheFT6和PheFT17基因对外界环境的应答及蛋白互作分析. 农业生物技术学报, 29(3): 506-520. Liu L, Chen J Y, Shao M X, et al. 2021. Responses of PheFT6 and PheFT17 genes in Phyllostachys pubescens to external environment and protein interaction analysis. Journal of Agricultural Biotechnology, 29(3): 506-520. [in Chinese] 罗 维, 牟 琼, 舒健虹, 等. 2021. 高羊茅FaFT基因表达, 蛋白互作及生物学功能分析. 生物技术通报, 37(4): 8-17. Luo W, Mou Q, Shu J H, et al. 2021. Expression, protein interactions and biological function analysis of FaFT in Festuca arundinacea. Biotechology Bulletin, 37(4): 8-17. [in Chinese] 苗雅慧, 鞠 丹, 梁珂豪, 等. 2021. 青杄转录因子基因PwNF-YB8的克隆与功能分析. 林业科学, 57(5): 77-92. Miao Y H, Ju D, Liang K H, et al. 2021. Cloning and functional analysis of transcription factor gene PwNF-YB8 from Picea wilsonii. Scientia Silvae Sinicae, 57(5): 77-92. [in Chinese] 张雨佳, 刘 丽, 邹龙海, 等. 2023. 毛竹PheFT12a基因过表达对拟南芥开花及芽发育的影响. 核农学报, 37(11): 2142-2150. Zhang Y J, Liu L, Zou L H, et al. 2023. Effects of overexpression of the moso bamboo PheFT12a on flowering and bud development of Arabidopsis. Journal of Nuclear Agricultural Sciences, 37(11): 2142-2150. [in Chinese] Abe M, Kobayashi Y, Yamamoto S, et al. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309(5737): 1052-1056. André D, Marcon A, Lee K C, et al. 2022. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Current Biology, 32(13): 2988-2996. Aung B, Gruber M Y, Amyot L, et al. 2015. MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnology Journal, 13(6): 779-790. Böhlenius H, Huang T, Charbonnel-Campaa L, et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 312(5776): 1040-1043. Corbesier L, Vincent C, Jang S, et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316(5827): 1030-1033. Dutta S, Biswas P, Chakraborty S, et al. 2018. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC Genomics, 19(1): 190. Fan C J, Ma J M, Guo Q R, et al. 2013. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One, 8(2): e56573. Fan C M, Hu R B, Zhang X M, et al. 2014. Conserved CO-FT regulons contribute to the photoperiod flowering control in soybean. BMC Plant Biology, 14(1): 1-14. Fan H J, Zhuo R Y, Wang H Y, et al. 2022. A comprehensive analysis of the floral transition in ma bamboo (Dendrocalamus latiflorus) reveals the roles of DlFTs involved in flowering. Tree Physiology, 42(9): 1899-1911. Fang M C, Zhou Z J, Zhou X S, et al. 2019. Overexpression of OsFTL10 induces early flowering and improves drought tolerance in Oryza sativa L. Peer J, 7(2): e6422. Fu J X, Yang L W, Dai S L. 2015. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium. Molecular Genetics and Genomics, 290(3): 1039-1054. Gu H W, Zhang K M, Chen J, et al. 2022. OsFTL4, an FT-like gene, regulates flowering time and drought tolerance in rice (Oryza sativa L.). Rice, 15(1): 1-15. Guo D L, Li C, Dong R, et al. 2015. Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum. Journal of Integrative Plant Biology, 57(6): 522-533. Guo X Q, Wang Y, Wang Q, et al. 2016. Molecular characterization of FLOWERING LOCUS T (FT) genes from bamboo (Phyllostachys violascens). Journal of Plant Biochemistry & Biotechnology, 25(2): 168–178. Hisamoto Y, Kobayashi M. 2013. Flowering habit of two bamboo species, Phyllostachys meyeri and Shibataea chinensis, analyzed with flowering gene expression. Plant Species Biology, 28(2): 109-117. Hou C J, Yang C H. 2009. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium gower Ramsey) that regulate the vegetative to reproductive transition. Plant & Cell Physiology, 50(8): 1544-1557. Imaizumi T, Schultz T F, Harmon F G, et al. 2005. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 309(5732): 293-297. Izawa T, Oikawa T, Sugiyama N, et al. 2002. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes & Development, 16(15): 2006-2020. Jeon J S, Lee S, Jung K H, et al. 2000. Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Molecular Breeding, 6(6): 581-592. Kardailsky I, Shukla V K, Ahn J H, et al. 1999. Activation tagging of the floral inducer FT. Science, 286(5446): 1962-1965. Kikuchi R, Kawahigashi H, Ando T, et al. 2009. Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiology, 149(3): 1341-1353. Kinoshita T, Ono N, Hayashi Y, et al. 2011. FLOWERING LOCUS T regulates stomatal opening. Current Biology, 21(14): 1232-1238. Kobayashi Y, Kaya H, Goto K, et al. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 286(5446): 1960-1962. Kobayashi Y, Weigel D. 2007. Move on up, it's time for change: mobile signals controlling photoperiod-dependent flowering. Genes & Development, 21(19): 2371-2384. Komiya R, Ikegami A, Tamaki S, et al. 2008. Hd3a and RFT1 are essential for flowering in rice. Development, 135(4): 767-774. Komiya R, Yokoi S, Shimamoto K. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development, 136(20): 3443-3450. Kong F J, Liu B H, Xia Z J, et al. 2010. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiology, 154(3): 1220-1231. Lee J H, Lee J S, Ahn J H. 2008. Ambient temperature signaling in plants: an emerging field in the regulation of flowering time. Journal of Plant Biology, 51(5): 321-326. Lee R, Baldwin S, Kenel F, et al. 2013. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nature Communications, 4: 2884. Lin X C, Chow T Y, Chen H H, et al. 2010. Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Genetics and Molecular Research, 9(2): 1085-1093. Liu L, Liu C, Hou X L, et al. 2012. FTIP1 is an essential regulator required for florigen transport. PLoS Biology, 10(4): e1001313. Liu Y Y, Yang K Z, Wei X X, et al. 2016. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution. New Phytologist, 212(3): 730-744. Lv Z Y, Zhang L, Chen L X, et al. 2018. The Artemisia annua FLOWERING LOCUS T Homolog 2, AaFT2, is a key regulator of flowering time. Plant Physiology and Biochemistry, 126: 197-205. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△Ct method. Methods, 25(4): 402-408. Meng X, Muszynski M G, Danilevskay O N. 2011. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. The Plant Cell, 23(3): 942-960. Mouradov A, Cremer F, Coupland G. 2002. Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell, 14(Suppl): S111-S130. Nakanishi H, Nakamichi N, Ito S, et al. 2013. Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus I: verification of the flowering-associated function of an FT homolog. Bioscience, Biotechnology and Biochemistry, 77(4): 747–753. Patil H B, Chaurasia A K, Azeez A, et al. 2018. Characterization of two TERMINAL FLOWER1 homologs PgTFL1 and PgCENa from pomegranate (Punica granatum L.). Tree Physiology, 38(5): 772-784. Peng Z H, Lu Y, Li L B, et al. 2013. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics, 45(4): 456-461. Purwestri Y A, Ogaki Y, Tamaki S, et al. 2009. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant & Cell Physiology, 50(3): 429-438. Qin Z R, Wu J J, Geng S F, et al. 2017. Regulation of FT splicing by an endogenous cue in temperate grasses. Nature Communications, 8(1): 14320. Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12): 2013-2037. Su Q, Chen L, Cai Y P, et al. 2022. Functional redundancy of FLOWERING LOCUS T 3b in soybean flowering time regulation. International Journal of Molecular Sciences, 23(5): 2497. Sun H B, Jia Z, Cao D, et al. 2011. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One, 6(12): e29238. Takadas S, Goto K. 2003. TERMINAL FLOWER 2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN 1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. The Plant Cell, 15(12): 2856-2865. Tamaki S, Matsuo S, Wong H L, et al. 2007. Hd3a protein is a mobile flowering signal in rice. Science, 316(5827): 1033-1036. Teo C J, Takahashi K, Shimizu K, et al. 2017. Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant & Cell Physiology, 58(2): 365-374. Triozzi P M, Ramos-Sánchez J M, Hernández-Verdeja T, et al. 2018. Photoperiodic regulation of shoot apical growth in poplar. Frontiers in Plant Science, 9: 1030. Wang F M, Yano K, Nagamatsu S, et al. 2020. Genome-wide expression quantitative trait locus studies facilitate isolation of causal genes controlling panicle structure. The Plant Journal, 103(1): 266-278. Wang H Y, Li J, Liu Z R, et al. 2022. Dwarf phenotype induced by overexpression of a GAI1-like gene from Rhus chinensis. Plant Cell, Tissue and Organ Culture, 151(3): 617–629. Wigge P A, Kim M C, Jaeger K E, et al. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309(5737): 1056-1059. Woods D, Dong Y X, Bouche F, et al. 2019. A florigen paralog is required for short-day vernalization in a pooid grass. eLife, 8: e42153. Wu J, Wu Q H, Bo Z J, et al. 2022. Comprehensive effects of Flowering Locus T-mediated stem growth in tobacco. Frontiers in Plant Science, 13: 922919. Yang Z Y, Chen L, Kohnen M V, et al. 2019. Identification and characterization of the PEBP family genes in moso bamboo (Phyllostachys heterocycla). Scientific Reports, 9(1): 14998. Zhan Z X, Zhang C S, et al. 2017. Molecular cloning, expression analysis, and subcellular localization of FLOWERING LOCUS T (FT) in carrot (Daucus carota L. ). Molecular Breeding, 37(12): 149. Zhang H J, Zhang Y. 2020. Molecular cloning and functional characterization of CmFT (FLOWERING LOCUS T) from Cucumis melo L. Journal of Genetics, 99(1): 1-8. Zhang J L, Chen L, Cai Y P, et al. 2023. A novel MORN-motif type gene GmMRF2 controls flowering time and plant height of soybean. International Journal of Biological Macromolecules, 245: 125464. Zhang M D, Hu S, Yi F, et al. 2021. Organelle visualization with multicolored fluorescent markers in bamboo. Frontiers in Plant Science, 12: 658836. Zhao J W, Gao P J, Li C L, et al. 2019. PhePEBP family genes regulated by plant hormones and drought are associated with the activation of lateral buds and seedling growth in Phyllostachys edulis. Tree Physiology, 39(8): 1387-1404. Zhu H G, Tian W G, Zhu X F, et al. 2020. Ectopic expression of GhSAMDC1 improved plant vegetative growth and early flowering through conversion of spermidine to spermine in tobacco. Scientific Reports, 10(1): 14418.
|