|
陈洪珠. 杨树腐烂病防治措施. 农村科技, 2013, 30 (4): 37.
doi: 10.3969/j.issn.1002-6193.2013.04.023
|
|
Chen H Z. Control measures of poplar canker. Rural Science and Technology, 2013, 30 (4): 37.
doi: 10.3969/j.issn.1002-6193.2013.04.023
|
|
李雪燕, 熊典广, 田呈明. 杨树腐烂病菌胞外分泌复合体亚基CcExo70的功能. 林业科学, 2021, 57 (8): 82- 93.
doi: 10.11707/j.1001-7488.20210808
|
|
Li X Y, Xiong D G, Tian C M. Functional analysis of the exocyst subunit CcExo70 in Cytospora chrysosperma. Scientia Silvae Sinicae, 2021, 57 (8): 82- 93.
doi: 10.11707/j.1001-7488.20210808
|
|
刘玲玲, 王永林, 熊典广, 等. 杨树腐烂病菌(Cytospora chrysosperma)原生质体遗传转化体系的构建. 微生物学通报, 2017, 44 (10): 2487- 2497.
|
|
Liu L L, Wang Y L, Xiong D G, et al. Construction of protoplast transformation system of Cytospora chrysosperma. Microbiology China, 2017, 44 (10): 2487- 2497.
|
|
闫腾飞. 杨树腐烂病的防治研究. 农业科技与信息, 2016, 33 (22): 115- 116.
doi: 10.3969/j.issn.1003-6997.2016.22.083
|
|
Yan T F. Prevention and treatment of poplar canker. Agricultural Science and Information, 2016, 33 (22): 115- 116.
doi: 10.3969/j.issn.1003-6997.2016.22.083
|
|
张光亚, 熊 杰, 陈凤玲. 外被体蛋白Ⅰ结构与功能的研究进展. 医学综述, 2016, 22 (1): 5- 9.
doi: 10.3969/j.issn.1006-2084.2016.01.002
|
|
Zhang G Y, Xiong J, Chen F L. Research progress in the structure and function of coat protein Ⅰ. Medical Recapitulate, 2016, 22 (1): 5- 9.
doi: 10.3969/j.issn.1006-2084.2016.01.002
|
|
赵 翔, 韩宝达, 李立新. SM蛋白在膜泡运输中的功能. 遗传, 2012, 34 (4): 11- 22.
|
|
Zhao X, Han B D, Li L X. Function of SM protein in vesicle transport. Hereditas(Beijing), 2012, 34 (4): 11- 22.
|
|
Adnan M, Islam W, Zhang J, et al. Diverse role of SNARE protein Sec22 in vesicle trafficking, membrane fusion, and autophagy. Cells, 2019, 8 (4): 337.
doi: 10.3390/cells8040337
|
|
Burri L, Lithgow T. A complete set of SNAREs in yeast. Traffic, 2004, 5 (1): 45- 52.
doi: 10.1046/j.1600-0854.2003.00151.x
|
|
Dou X, Wang Q, Qi Z, et al. MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzae. PLoS ONE, 2011, 6 (1): e16439.
doi: 10.1371/journal.pone.0016439
|
|
Flanagan J J, Mukherjee I, Barlowe C. Examination of Sec22 homodimer formation and role in SNARE-dependent membrane fusion. Journal of Biological Chemistry, 2015, 290 (17): 10657- 10666.
doi: 10.1074/jbc.M114.626911
|
|
Giraldo M C, Dagdas Y F, Gupta Y K, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communications, 2013, 4, 1996.
doi: 10.1038/ncomms2996
|
|
Gupta G D, Free S J, Levina N N, et al. Two divergent plasma membrane syntaxin-like SNAREs, nsyn1 and nsyn2, contribute to hyphal tip growth and other developmental processes in Neurospora crassa. Fungal Genetics and Biology, 2003, 40 (3): 271- 286.
doi: 10.1016/S1087-1845(03)00109-9
|
|
Higuchi Y, Shoji JY, Arioka M, et al. Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. Eukaryotic Cell, 2009, 8 (1): 37- 46.
doi: 10.1128/EC.00207-08
|
|
Hong SY, So J, Lee J, et al. Functional analyses of two syntaxin-like SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genetics and Biology, 2010, 47 (4): 364- 372.
doi: 10.1016/j.fgb.2010.01.005
|
|
Kuratsu M, Taura A, Shoji JY, et al. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genetics and Biology, 2007, 44 (12): 1310- 1323.
doi: 10.1016/j.fgb.2007.04.012
|
|
Li B, Dong X, Zhao R, et al. The t-SNARE protein FgPep12, associated with FgVam7, is essential for ascospore discharge and plant infection by trafficking Ca2+ ATPase FgNeo1 between Golgi and endosome/vacuole in Fusarium graminearum. Public Library of Science Pathogens, 2019, 15 (5): e1007754.
doi: 10.1371/journal.ppat.1007754
|
|
Li B, Liu L, Li Y, et al. The FgVps39-FgVam7-FgSso1 complex mediates vesicle trafficking and is important for the development and virulence of Fusarium graminearum. Molecular plant-microbe interactions, 2017, 30 (5): 410- 422.
|
|
Li X, Xiong D, Tian C. Genome‐wide identification, phylogeny and transcriptional profiling of SNARE genes in Cytospora chrysosperma. Journal of Phytopathology, 2021, 169 (7/8): 471- 485.
doi: 10.1111/jph.13003
|
|
Song W, Dou X, Qi Z, et al. R-SNARE homolog MoSec22 is required for conidiogenesis, cell wall integrity, and pathogenesis of Magnaporthe oryzae. PLoS ONE, 2010, 5 (10): e13193.
doi: 10.1371/journal.pone.0013193
|
|
Steinberg G, Fuchs U. 2004. The role of microtubules in cellular organization and endocytosis in the plant pathogen Ustilago maydis. Journal of Microscopy, 214(Pt 2): 114−123.
|
|
Takita Y, Engstrom L, Ungermann C, et al. Inhibition of the Ca(2+)-ATPase Pmc1p by the v-SNARE protein Nyv1p. Journal of Biological Chemistry, 2001, 276 (9): 6200- 6206.
doi: 10.1074/jbc.M009191200
|
|
Tochio H, Tsui MM, Banfield DK, et al. An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science, 2001, 293 (5530): 698- 702.
|
|
Wang J, Tian L, Zhang D D, et al. SNARE-encoding genes VdSec22 and VdSso1 mediate protein secretion required for full virulence in Verticillium dahliae. Molecular Plant Microbe Interactions, 2018, 31 (6): 651- 664.
doi: 10.1094/MPMI-12-17-0289-R
|
|
Wen W, Chen L, Wu H, et al. Identification of the yeast R-SNARE Nyv1p as a novel longin domain-containing protein. Molecular Biology of the Cell, 2006, 17 (10): 4282- 4299.
doi: 10.1091/mbc.e06-02-0128
|
|
Xu H, Zick M, Wickner W T, et al. A lipid-anchored SNARE supports membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (42): 17325- 17330.
doi: 10.1073/pnas.1113888108
|
|
Zhang H, Li B, Fang Q, et al. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. Molecular Plant Pathology, 2016, 17 (1): 108- 119.
doi: 10.1111/mpp.12267
|
|
Zhang Y, Shin Y K. Transmembrane organization of yeast syntaxin-analogue Sso1p. Biochemistry, 2006, 45 (13): 4173- 4181.
doi: 10.1021/bi052178+
|