林业科学 ›› 2024, Vol. 60 ›› Issue (3): 100-110.doi: 10.11707/j.1001-7488.LYKX20230249
徐磊1,2,吴小云1,2,律江3,石云3,朱梦洵4,许行1,2,*(),张志强1,2
收稿日期:
2023-06-12
出版日期:
2024-03-25
发布日期:
2024-04-08
通讯作者:
许行
E-mail:hangxu@bjfu.edu.cn
基金资助:
Lei Xu1,2,Xiaoyun Wu1,2,Jiang Lü3,Yun Shi3,Mengxun Zhu4,Hang Xu1,2,*(),Zhiqiang Zhang1,2
Received:
2023-06-12
Online:
2024-03-25
Published:
2024-04-08
Contact:
Hang Xu
E-mail:hangxu@bjfu.edu.cn
摘要:
目的: 在全球辐射总量及其组成显著变化的背景下,明确散射辐射比例(Fdif)对华北平原杨树人工林生态系统能量分配的影响,为准确评估杨树人工林的生态服务功能和进一步完善生态系统过程模型提供科学依据。方法: 利用涡度相关技术和小气候观测,对2019、2021年生长季(DOY 91~304)杨树人工林生态系统的能量通量和环境因子开展研究。结果: 华北平原杨树人工林生态系统能量分配在生长季中期(DOY 152~243)以潜热通量(LE)为主,在生长季初期(DOY 91~151)和末期(DOY 244~304)以显热通量(H)为主。Fdif与波文比(β)呈显著负相关(P<0.01),与冠层导度(Gs;P<0.01)、冠层分离指数(Ω;P<0.05)和Priestley-Taylor系数(α;P < 0.01)呈显著正相关。通径分析结果表明,Gs是调节华北平原杨树人工林生态系统能量分配的主要因子,Fdif下降时,Gs降低,饱和水汽压差(VPD)增大,生态系统的β显著增大,进而改变生态系统能量分配模式。结论: Fdif变化影响华北平原杨树人工林生态系统能量分配,Fdif下降会导致能量平衡中的LE所占比例增加、H所占比例相应减小。在气候变化背景下,本研究不仅可深入揭示华北平原杨树人工林生态系统能量分配机制,同时也对准确评估森林生态系统服务功能起到至关重要的作用。
中图分类号:
徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110.
Lei Xu,Xiaoyun Wu,Jiang Lü,Yun Shi,Mengxun Zhu,Hang Xu,Zhiqiang Zhang. Impacts of Diffuse Radiation Fraction on Energy Partitioning in a Poplar Plantation in the North China Plain[J]. Scientia Silvae Sinicae, 2024, 60(3): 100-110.
表1
2019、2021年生长季正午时段(10: 00—15: 00,LST=GMT+8)生物物理参数多重比较①"
生物物理参数 Biophysical parameters | 生长季Growing season | ||
初期Early growing season | 中期Mid-growing season | 末期Last growing season | |
β | 0.81 ± 0.03b | 0.25 ± 0.01c | 1.24 ± 0.08a |
Gs | 375.12 ± 10.04b | 443.76 ± 9.79a | 317.03 ± 10.36c |
Ω | 0.41 ± 0.01b | 0.49 ± 0.01a | 0.38 ± 0.01c |
α | 0.87 ± 0.01b | 1.08 ± 0.01a | 0.88 ± 0.01b |
崔万晶, 侯 巍, 杨睿智, 等. 北京城市森林生态系统能量分配的季节动态研究. 北京林业大学学报, 2021, 43 (1): 27- 36. | |
Cui W J, Hou W, Yang R Z, et al. Seasonal dynamics of energy distribution in urban forest ecosystem of Beijing. Journal of Beijing Forestry University, 2021, 43 (1): 27- 36. | |
胡 波, 陈丽华. 黄土高原不同林地土壤水分特征及影响因子通径分析. 中国水土保持科学, 2021, 19 (1): 79- 86. | |
Hu B, Chen L H. Characteristics of soil moisture and path analysis of influencing factors on different forest lands on the Loess Plateau. Science of Soil and Water Conservation, 2021, 19 (1): 79- 86. | |
李正泉, 于贵瑞, 温学发, 等. 中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价. 中国科学(D辑:地球科学), 2004, 34 (S2): 46- 56. | |
Li Z Q, Yu G R, Wen X F, et al. Evaluation of the energy balance closure status of the China flux observation network (ChinaFLUX). Scientia Sinica (Terrae), 2004, 34 (S2): 46- 56. | |
李紫恬, 王盛萍, 袁亚男, 等. 华北土石山区不同密度油松人工林土壤含水量及其时间稳定性剖面分布. 生态与农村环境学报, 2019, 35 (4): 491- 499. | |
Li Z T, Wang S P, Yuan Y N, et al. Profile distribution of soil moisture and its temporal stability under various planting densities in rocky mountain area of northern China. Journal of Ecology and Rural Environment, 2019, 35 (4): 491- 499. | |
刘家霖, 满秀玲. 降雨和非降雨日兴安落叶松天然林蒸腾及蒸散发特征. 生态学报, 2017, 37 (15): 5059- 5069. | |
Liu J L, Man X L. Characteristics of transpiration and evapo-transpiration from natural Larix gmelinii forests on rainy and non-rainy days. Acta Ecologica Sinica, 2017, 37 (15): 5059- 5069. | |
马小红, 冯 起. 荒漠河岸胡杨林生态系统能量分配及蒸散发. 生态学报, 2020, 40 (23): 8683- 8693. | |
Ma X H, Feng Q. Energy partitioning and evapotranspiration of Populus euphratica forests in desert riparian area. Acta Ecologica Sinica, 2020, 40 (23): 8683- 8693. | |
彭 丽, 赵仲辉, 项文化, 等. 辐射变化对中亚热带杉木人工林净CO2交换的影响. 应用生态学报, 2022, 33 (1): 17- 24. | |
Peng L, Zhao Z H, Xiang W H, et al. Effects of radiation changes on net ecosystem exchange of carbon dioxide in a middle subtropical Chinese fir plantation. Chinese Journal of Applied Ecology, 2022, 33 (1): 17- 24. | |
任雪塬, 张 强, 岳 平, 等. 中国北方四类典型下垫面能量分配特征及其环境影响因子研究. 高原气象, 2021, 40 (1): 109- 122. | |
Ren X Y, Zhang Q, Yue P, et al. Study on energy partitioning and its environmental factors of four types of typical underlying surfaces in North China. Plateau Meteorology, 2021, 40 (1): 109- 122. | |
时元智, 崔远来, 才 硕, 等. WPL校正和坐标轴旋转对稻田湍流通量计算的影响. 中国农村水利水电, 2016, 407 (9): 5- 9. | |
Shi Y Z, Cui Y L, Cai S, et al. Influence of WPL correction and coordinate rotation on turbulent fluxes calculation in paddy field. China Rural Water and Hydropower, 2016, 407 (9): 5- 9. | |
孙长山. 探索中国森林资源发展现状. 林业勘查设计, 2020, 49 (4): 22- 24, 42.
doi: 10.3969/j.issn.1673-4505.2020.04.008 |
|
Sun C S. Exploration on the development status of forest resources in China. Forest Investigation Design, 2020, 49 (4): 22- 24, 42.
doi: 10.3969/j.issn.1673-4505.2020.04.008 |
|
孙 慧, 张建锋, 胡 颖, 等. 土壤过氧化氢酶对不同林分覆盖的响应. 土壤通报, 2016, 47 (3): 605- 610. | |
Sun H, Zhang J F, Hu Y, et al. Research on the response of soil catalase to different forest stand covers. Chinese Journal of Soil Science, 2016, 47 (3): 605- 610. | |
王子钰, 闫文德, 颜成正, 等. 北京山区侧柏林冠层-大气蒸腾导度模拟及环境因子响应. 生态学报, 2021, 41 (6): 2471- 2481. | |
Wang Z Y, Yan W D, Yan C Z, et al. Simulation and environmental response of canopy-atmospheric transpiration conductance of Platycladus orientalis forests in the Beijing Mountain area. Acta Ecologica Sinica, 2021, 41 (6): 2471- 2481. | |
卫 楠, 张 弥, 王辉民, 等. 散射辐射对亚热带人工针叶林光能利用率的影响. 生态学报, 2017, 37 (10): 3403- 3414. | |
Wei N, Zhang M, Wang H M, et al. The impacts of changes in diffuse radiation on light use efficiency in a subtropical plantation coniferous forest. Acta Ecologica Sinica, 2017, 37 (10): 3403- 3414. | |
谢 琰, 文 军, 刘 蓉, 等. 太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究. 高原气象, 2018, 37 (3): 614- 625. | |
Xie Y, Wen J, Liu R, et al. The role of solar radiation and water vapor pressure deficit on controlling latent heat flux density over the alpine wetland of the source region of the Yellow River. Plateau Meteorology, 2018, 37 (3): 614- 625. | |
杨晓亚, 李 俊, 江晓东, 等. 散射辐射比例与冬小麦光能利用率和总初级生产力的关系. 中国农业气象, 2018, 39 (7): 462- 467. | |
Yang X Y, Li J, Jiang X D, et al. Relationships between diffuse radiation fraction and light use efficiency and gross primary productivity of winter wheat. Chinese Journal of Agrometeorology, 2018, 39 (7): 462- 467. | |
张 弥, 于贵瑞, 张雷明, 等. 太阳辐射对长白山阔叶红松林净生态系统碳交换的影响. 植物生态学报, 2009, 33 (2): 270- 282. | |
Zhang M, Yu G R, Zhang L M, et al. Effects of solar radiation on net ecosystem exchange of broadleaved-Korean pine mixed forest in Changbai Mountain, China. Chinese Journal of Plant Ecology, 2009, 33 (2): 270- 282. | |
张 强, 张 良, 黄 菁, 等. 2014. 我国黄土高原地区陆面能量的空间分布规律及其与气候环境的关系. 中国科学(地球科学), 44(9): 2062−2076. | |
Zhang Q, Zhang L, Huang J, et al, 2014. Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment. Scientia Sinica (Terrae), 44(9): 2062−2076. [in Chinese] | |
张晓娟, 吴志祥, 杨 川, 等. 海南岛橡胶林能量平衡研究. 西北林学院学报, 2016, 31 (2): 77- 85. | |
Zhang X J, Wu Z X, Yang C, et al. Energy balance research of the rubber plantation in Hainan Island. Journal of Northwest Forestry University, 2016, 31 (2): 77- 85. | |
张 悦, 冯会丽, 王维枫, 等. 洪泽湖地区杨树人工林碳水通量昼夜和季节变化特征. 南京林业大学学报(自然科学版), 2019, 43 (5): 113- 120. | |
Zhang Y, Feng H L, Wang W F, et al. Diurnal and seasonal changes of fluxes over a poplar plantation in Hongze Lake basin. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43 (5): 113- 120. | |
Almeida-Rodriguez A M, Hacke U G, Laur J. 2011. Influence of evaporative demand on aquaporin expression and root hydraulics of hybrid poplar. Plant, Cell and Environment, 34(8): 1318-1331. | |
Badarinath K, Kharol S K, Kaskaoutis D, et al. Influence of atmospheric aerosols on solar spectral irradiance in an urban area. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69 (4/5): 589- 599. | |
Blanken P D, Black T, Yang P C, et al. Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. Journal of Geophysical Research Atmospheres, 1997, 102 (24): 28915- 28927. | |
Bois B, Pieri P, Van Leeuwen C, et al. Using remotely sensed solar radiation data for reference evapotranspriation estimation at a daily time step. Agricultural and Forest Meteorology, 2008, 148 (4): 619- 630.
doi: 10.1016/j.agrformet.2007.11.005 |
|
Briggs W R, Christie J M. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science, 7(5): 204−210. | |
Budyko M I. The effect of solar radiation variations on the climate of the Earth. Tellus, 1969, 21 (5): 611- 619.
doi: 10.3402/tellusa.v21i5.10109 |
|
Chen S P, Chen J Q, Lin G H, et al. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agricultural and Forest Meteorology, 2009, 149 (11): 1800- 1809.
doi: 10.1016/j.agrformet.2009.06.009 |
|
Dolling P J, Lyons A M, Latta R A, 2011. Optimal plant densities of lucerne (Medicago sativa) for pasture production and soil water extraction in mixed pastures in south-western Australia. Plant and Soil, 348(1/2): 315−327. | |
Emmel C, D’Odorico P, Revill A, et al. Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture. Global Change Biology, 2020, 26 (9): 5164- 5177.
doi: 10.1111/gcb.15226 |
|
Foken T, Aubinet M, Leuning R. 2012. The eddy covariance method//Aubinet M, Vesala T, Papale D. eds. Eddy covariance: a practical guide to measurement and data analysis. Berlin: Springer Atmospheric Sciences, 1-19. | |
Gu L H, Baldocchi D, Verma S B, et al. 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research: Atmospheres, 107(D6): ACL 2−1. | |
Han J Y, Ye Shu, Guo C Y, et al. Cloudy sky conditions promote net ecosystem CO2 exchange in a subtropical coniferous plantation across seasons. Journal of Resources and Ecology, 2019, 10 (2): 137- 146.
doi: 10.5814/j.issn.1674-764x.2019.02.004 |
|
Jarvis P G, McNaughton K G. Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research, 1986, (15): 1- 49. | |
Knohl A, Baldocchi D D. Effects of diffuse radiation on canopy gas exchange process in a forest ecosystem. Journal of Geophysical Research, 2008, 113 (G2): G02023. | |
Komatsu H. Forest categorization according to dry-canopy evaporation rates in the growing season: comparison of the Priestley-Taylor coefficient values from various observation sites. Hydrological Processes, 2005, 19 (19): 3873- 3896.
doi: 10.1002/hyp.5987 |
|
Krishnan P, Meyers T P, Scott R L, et al. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agricultural and Forest Meteorology, 2012, 153, 31- 44.
doi: 10.1016/j.agrformet.2011.09.017 |
|
Launiainen S, Katul G G, Kolari P, et al. 2016. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area? Global Change Biology, 22(12): 4096−4113. | |
Li J X, Ma W Z, Yang S, et al. Northern dimming and southern brightening in eastern China during the first decade of the 21st century. Frontiers in Environmental Science, 2022, 10, 1003526.
doi: 10.3389/fenvs.2022.1003526 |
|
Liu F S, Tao F L, Liu J Y, et al. Effects of land use/cover change on land surface energy partitioning and climate in Northeast China. Theoretical and Applied Climatology, 2014, 123 (1): 141- 150. | |
Mahrt L, Vickers D. Boundary-layer adjustment over small-scale changes of surface heat flux. Boundary-Layer Meteorology, 2005, 116 (2): 313- 330.
doi: 10.1007/s10546-004-1669-z |
|
Matías L, Castro J, Zamora R. Effect of simulated climate change on soil respiration in a Mediterranean-type ecosystem: rainfall and habitat type are more important than temperature or the soil carbon pool. Ecosystems, 2012, 15 (2): 299- 310.
doi: 10.1007/s10021-011-9509-8 |
|
Monteith J L, Unsworth M H. 2013. Principles of environmental physics: plants, animals, and the atmosphere (4th edition). Amsterdam: Academic Press. | |
Monteith J L. Evaporation and environment. Symposia of the Society for Experimental Biology, 1965, 19, 205- 234. | |
Park S B, Knohl A, Lucas-Moffat A M, et al. Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia. Agricultural and Forest Meteorology, 2018, 250/251, 376- 387.
doi: 10.1016/j.agrformet.2017.09.009 |
|
Perez P J, Castellvi F, Martinez-Cob A. A simple model for estimating the Bowen ratio from climatic factors for determining latent and sensible heat flux. Agricultural and Forest Meteorology, 2008, 148 (1): 25- 37.
doi: 10.1016/j.agrformet.2007.08.015 |
|
Priestley C H B, Taylor R J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review. 100(2): 81−92. | |
Reichstein M, Falge E, Baldocchi D D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11 (9): 1424- 1439.
doi: 10.1111/j.1365-2486.2005.001002.x |
|
Steiner A L, Mermelstein D, Cheng S J, et al. Observed impact of atmospheric aerosols on the surface energy budget. Earth Interactions, 2013, 17 (14): 1- 22.
doi: 10.1175/2013EI000523.1 |
|
Stoy P C, Mauder M, Foken T, et al. A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agricultural and Forest Meteorology, 2013, 171/172, 137- 152.
doi: 10.1016/j.agrformet.2012.11.004 |
|
Urban O, Klem K, Ač A, et al. Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology, 2012, 26 (1): 46- 55.
doi: 10.1111/j.1365-2435.2011.01934.x |
|
Wang S J, Chen H Y H, Tan Y, et al. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Scientific Reports, 2016, 6, 20816.
doi: 10.1038/srep20816 |
|
Wang Z L, Wang C S, Yang S, et al. Evaluation of surface solar radiation trends over China since the 1960s in the CMIP6 models and potential impact of aerosol emissions. Atmospheric Research, 2022, 268, 20816. | |
Webb E K, PearmanG I, Leuning R G. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 1980, 106 (447): 85- 100.
doi: 10.1002/qj.49710644707 |
|
Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 2001, 99 (1): 127- 150.
doi: 10.1023/A:1018966204465 |
|
Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113 (1/4): 223- 243. | |
Wu Y, Liu T, Paredes P, et al. Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: evapotranspiration partitioning and capillary rise. Agricultural Water Management, 2015, 152, 222- 232.
doi: 10.1016/j.agwat.2015.01.016 |
|
Xu H, Zhang Z Q, Chen J Q, et al. Regulations of cloudiness on energy partitioning and water use strategy in a riparian poplar plantation. Agricultural and Forest Meteorology, 2018, 262, 135- 146.
doi: 10.1016/j.agrformet.2018.07.008 |
|
Xu H, Zhang Z Q, Chen J Q, et al. Cloudiness regulates gross primary productivity of a poplar plantation under different environmental conditions. Canadian Journal of Forest Research, 2017, 47 (5): 648- 658.
doi: 10.1139/cjfr-2016-0413 |
|
Yang J C, Wang Z H. Land surface energy partitioning revisited: A novel approach based on single depth soil measurement. Geophysical Research Letters, 2014, 41 (23): 8348- 8358.
doi: 10.1002/2014GL062041 |
|
Zenone T, Fischer M, Arriga N, et al. Biophysical drivers of the carbon dioxide, water vapor, and energy exchanges of a short-rotation poplar coppice. Agricultural and Forest Meteorology, 2015, 209/210, 22- 35. |
[1] | 万家鸣,律江,石云,许行,张志强. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 2023, 59(5): 1-10. |
[2] | 赵蕊蕊,刘勇,王凯. 生物炭和有机肥对毛白杨人工林地木质分解及土壤养分循环相关酶活性的影响[J]. 林业科学, 2023, 59(11): 1-11. |
[3] | 靳川,查天山,贾昕,田赟,周文君,卫腾宙. 毛乌素沙地沙柳光系统Ⅱ光保护机制和能量分配动态及其影响因子[J]. 林业科学, 2020, 56(10): 34-44. |
[4] | 夏国威, 孙晓梅, 陈东升, 张守攻. 日本落叶松冠层光合特性的空间变化[J]. 林业科学, 2019, 55(6): 13-21. |
[5] | 王文波, 王延平, 王华田, 马雪松, 伊文慧. 杨树人工林连作与轮作对土壤氮素细菌类群和氮素代谢的影响[J]. 林业科学, 2016, 52(5): 45-54. |
[6] | 陈存, 丁昌俊, 苏晓华, 黄秦军. 欧美杨纤维含量构成因素的相关和通径分析[J]. 林业科学, 2016, 52(11): 124-133. |
[7] | 许坛, 王华田, 朱婉芮, 王延平, 李传荣, 姜岳忠. 连作杨树细根根序形态及解剖结构[J]. 林业科学, 2015, 51(1): 119-126. |
[8] | 谷加存, 赵妍丽, 王文娜, 王韶仲, 王政权. 皮层和中柱对水曲柳和落叶松吸收根直径变异的影响[J]. 林业科学, 2014, 50(10): 59-66. |
[9] | 傅建平, 兰再平, 孙尚伟, 刘俊琴, 张勇. 滴灌条件下杨树人工林土壤的水分运移[J]. 林业科学, 2013, 49(6): 25-29. |
[10] | 王静;梁军;焦一杰;张星耀. 杨树人工林林木个体大小比数与溃疡病发生程度的关系[J]. 林业科学, 2012, 48(11): 57-62. |
[11] | 张瑛春;王军辉;张守攻;张建国;孙晓梅;朱景乐. Pilodyn和日本落叶松材性指标的关系[J]. 林业科学, 2010, 46(7): 114-119. |
[12] | 赵丽英 杨建伟;张二芹 杜瑞卿. 环境因子对盆栽刺槐苗木生理生长变化影响的通径分析[J]. 林业科学, 2010, 46(4): 140-145. |
[13] | 田柳 任桂芳 李永 郭民伟 朴春根. 北京市杨树人工林微生物区系分析[J]. 林业科学, 2010, 46(3): 80-88. |
[14] | 陈端吕. 李际平. 西洞庭湖区森林景观格局的环境响应[J]. 林业科学, 2008, 44(7): 29-35. |
[15] | 刘福德;姜岳忠 王华田 王迎 孔令刚. 杨树人工林连作地力维持技术的探讨[J]. , 2007, 43(zk): 58-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||