林业科学 ›› 2023, Vol. 59 ›› Issue (6): 1-11.doi: 10.11707/j.1001-7488.LYKX20220508
王宏星,孙晓梅,陈东升,吴春燕,张守攻*
收稿日期:
2022-07-29
接受日期:
2023-05-09
出版日期:
2023-06-25
发布日期:
2023-08-08
通讯作者:
张守攻
基金资助:
Hongxing Wang,Xiaomei Sun,Dongsheng Chen,Chunyan Wu,Shougong Zhang*
Received:
2022-07-29
Accepted:
2023-05-09
Online:
2023-06-25
Published:
2023-08-08
Contact:
Shougong Zhang
摘要:
目的: 探讨间伐强度对日本落叶松人工林林下植被、土壤微生物群落结构和土壤多功能性的影响,为其合理经营提供科学依据。方法: 以辽宁省东部山区16年生日本落叶松人工林为研究对象,于2019年4月设置对照组(2 000株·hm?2,郁闭度0.89)、间伐强度30%(保留1 404株·hm?2,郁闭度0.78)、间伐强度45%(保留1 106株·hm?2,郁闭度0.69)3种间伐强度,2020年7月生长旺季调查林下植被特征,并在春、夏和秋季进行土壤取样,测定土壤理化性质、酶活性、土壤真菌和细菌多样性与群落组成,以及基于15个与碳、氮、磷循环相关的土壤理化性质和酶活性指标计算土壤多功能性。结果: 与对照组相比,45%间伐强度可显著提高林下植物被多样性、土壤有效养分含量、酶活性、真菌多样性,增加土壤多功能性,且对土壤性质的影响在夏季表现尤为明显;30%间伐强度显著降低春、夏、季的土壤多功能性,对林下植被生物量和多样性影响不显著;2) 间伐显著影响土壤真菌优势门和纲的相对丰度,对细菌优势门和纲的相对丰度影响不显著;45%间伐强度显著增加夏季子囊菌门的相对丰度,显著降低夏、秋季担子菌门的相对丰度;3) 相关分析显示,林下植被生物量和多样性、真菌丰富度与土壤多功能性显著正相关;结构方程模型结果表明,45%间伐强度对土壤多功能性具有显著而直接的正效应,并通过改变真菌群落组成产生间接的正效应。结论: 日本落叶松人工林土壤真菌群落更易受间伐影响,细菌群落主要受季节影响;45%间伐强度(郁闭度0.69)较30%间伐强度(郁闭度0.78)更有利于维持16年生日本落叶松人工林林下植被生长发育、真菌多样性和土壤多功能性。
中图分类号:
王宏星,孙晓梅,陈东升,吴春燕,张守攻. 适度间伐对日本落叶松人工林生物多样性和土壤多功能性影响[J]. 林业科学, 2023, 59(6): 1-11.
Hongxing Wang,Xiaomei Sun,Dongsheng Chen,Chunyan Wu,Shougong Zhang. Effects of Moderate Thinning on Biological Diversity and Soil Multifunctionality in Larix kaempferi Plantations[J]. Scientia Silvae Sinicae, 2023, 59(6): 1-11.
表1
样地基本情况"
间伐强度 Thinning intensity | 平均胸径 Average DBH/cm | 平均树高 Average height/m | 郁闭度 Canopy density | 保留密度 Density/(trees·hm?2) | 坡向 Aspect | 海拔 Altitude/m | 坡度 Slope/(°) |
对照 CK | 12.0 ± 0.2 | 15.5 ± 0.2 | 0.89 ± 0.02 | 2 000 ± 32 | 西北Northwest | 375 | 8° |
30%间伐强度30% thinning(T30) | 13.0 ± 0.2 | 16.3 ± 0.4 | 0.78 ± 0.02 | 1 404 ± 41 | 西北Northwest | 379 | 10° |
45%间伐强度45% thinning(T45) | 13.7 ± 0.2 | 16.7 ± 0.3 | 0.69 ± 0.01 | 1 106 ± 41 | 西北Northwest | 391 | 11° |
表2
间伐和季节对土壤性质和多功能性的影响①"
季节 Season | 处理 Thinning | 土壤含水量 SWC (%) | 土壤有机碳 SOC/(g·kg?1) | 全氮 TN/(g·kg?1) | 全磷 TP/(g·kg?1) | 可溶性碳 DOC/(g·kg?1) | 铵态氮 NH4+-N/(mg·kg?1) | 硝态氮 NO3?-N/(mg·kg?1) | 有效磷 AP/(mg·kg?1) |
春 Spring | CK | 25.91 ± 0.83b | 38.38 ± 0.86a | 3.16 ± 0.24a | 0.50 ± 0.01a | 0.41 ± 0.06a | 15.49 ± 1.18ab | 9.84 ± 0.93a | 7.19 ± 1.16a |
T30 | 26.80 ± 0.90b | 37.26 ± 2.44a | 3.01 ± 0.23a | 0.49 ± 0.02a | 0.41 ± 0.04a | 11.54 ± 2.81b | 10.38 ± 1.51a | 5.36 ± 1.99a | |
T45 | 28.65 ± 0.84a | 39.62 ± 2.27a | 3.26 ± 0.21a | 0.51 ± 0.01a | 0.46 ± 0.06a | 16.31 ± 1.44a | 10.82 ± 0.69a | 6.03 ± 1.66a | |
夏 Summer | CK | 13.24 ± 0.87b | 37.33 ± 0.53a | 3.10 ± 0.20a | 0.50 ± 0.01a | 0.42 ± 0.02b | 10.71 ± 0.74b | 5.57 ± 0.65b | 6.10 ± 0.70a |
T30 | 13.25 ± 0.51b | 38.54 ± 2.46a | 3.04 ± 0.10a | 0.49 ± 0.01a | 0.46 ± 0.02ab | 7.30 ± 0.94c | 4.46 ± 0.26c | 3.60 ± 1.02b | |
T45 | 17.31 ± 0.27a | 38.78 ± 1.69a | 3.19 ± 0.14a | 0.50 ± 0.02a | 0.48 ± 0.04a | 12.57 ± 1.15a | 8.58 ± 0.51a | 6.63 ± 1.03a | |
秋 Autumn | CK | 19.10 ± 0.48b | 37.74 ± 2.24a | 2.99 ± 0.05a | 0.50 ± 0.02a | 0.44 ± 0.04a | 7.59 ± 0.13b | 8.94 ± 0.62a | 6.10 ± 1.16a |
T30 | 19.89 ± 0.42b | 37.54 ± 1.80a | 3.10 ± 0.18a | 0.50 ± 0.01a | 0.39 ± 0.03a | 7.94 ± 0.18ab | 6.08 ± 1.05b | 7.31 ± 0.84a | |
T45 | 22.66 ± 0.76a | 38.86 ± 1.81a | 3.05 ± 0.17a | 0.51 ± 0.02a | 0.45 ± 0.05a | 10.30 ± 0.29a | 8.50 ± 0.65a | 8.52 ± 0.70a | |
季节 Season | 处理 Thinning | 脲酶 URE/ (mg·g?124h?1) | β-葡萄糖苷酶 βG/ (μmol·g?1h?1) | 纤维素水解酶 CBH/ (μmol·g?1h?1) | 几丁质酶 NAG/ (μmol·g?1h?1) | 多酚氧化酶 PPO/ (μmol·g?1h?1) | 过氧化物酶 POD/ (μmol·g?1h?1) | 酸性磷酸酶 ACP/ (μmol·g?1·h?1) | 土壤多功 能性 SMF |
春 Spring | CK | 6.27±0.83a | 0.55±0.04a | 0.21±0.01a | 0.14±0.01a | 0.14±0.03a | 0.72±0.04c | 2.80±0.05a | 0.75±0.01a |
T30 | 5.56±1.02a | 0.53±0.01b | 0.15±0.01b | 0.11±0.02b | 0.07±0.01b | 0.91±0.01b | 2.72±0.07a | 0.67±0.01b | |
T45 | 6.39±0.85a | 0.56±0.02a | 0.20±0.01a | 0.16±0.01a | 0.15±0.04a | 1.07±0.02a | 2.80±0.04a | 0.78±0.02a | |
夏 Summer | CK | 5.47±1.15a | 0.45±0.02b | 0.17±0.01a | 0.18±0.01b | 0.23±0.03b | 0.82±0.05b | 2.44±0.05b | 0.67±0.01b |
T30 | 5.20±0.53a | 0.42±0.03b | 0.13±0.01b | 0.15±0.01b | 0.21±0.06b | 0.79±0.13b | 2.34±0.08b | 0.60±0.02c | |
T45 | 6.29±0.52a | 0.49±0.01a | 0.17±0.02a | 0.22±0.02a | 0.31±0.03a | 0.96±0.05a | 2.66±0.05a | 0.74±0.01a | |
秋 Autumn | CK | 4.90±0.67a | 0.32±0.01a | 0.09±0.02a | 0.09±0.02a | 0.26±0.02b | 0.74±0.05b | 2.18±0.04a | 0.60±0.01b |
T30 | 5.05±0.30a | 0.29±0.02b | 0.09±0.01a | 0.10±0.01a | 0.32±0.01ab | 0.79±0.07b | 2.16±0.05a | 0.61±0.01b | |
T45 | 4.94±0.50a | 0.34±0.02a | 0.08±0.01a | 0.11±0.01a | 0.34±0.06a | 0.92±0.16a | 2.22±0.04a | 0.68±0.01a |
陈慧清, 李晓晨, 于学峰, 等. 土壤生态系统微生物多样性技术研究进展. 地球与环境, 2018, 46 (2): 204- 209.
doi: 10.14050/j.cnki.1672-9250.2018.46.026 |
|
Chen H Q, Li X C, Yu X F, et al. A review on technique progresses of microbial diversity in soil ecosystem. Earth and Environment, 2018, 46 (2): 204- 209.
doi: 10.14050/j.cnki.1672-9250.2018.46.026 |
|
李香真, 郭良栋, 李家宝, 等. 中国土壤微生物多样性监测的现状和思考. 生物多样性, 2016, 24 (11): 1240- 1248.
doi: 10.17520/biods.2015345 |
|
Li X Z, Guo L D, Li J B, et al. Soil microbial diversity observation in China: current situation and future consideration. Chinese Journal of Plant Ecology, 2016, 24 (11): 1240- 1248.
doi: 10.17520/biods.2015345 |
|
徐雪蕾, 孙玉军, 周 华, 等. 间伐强度对杉木人工林林下植被和土壤性质的影响. 林业科学, 2019, 55 (3): 1- 12.
doi: 10.11707/j.1001-7488.20190301 |
|
Xu X L, Sun Y J, Zhou H, et al. Effects of thinning intensity on understory growth and soil properties in Chinese fir plantation. Scientia Silvae Sinicae, 2019, 55 (3): 1- 12.
doi: 10.11707/j.1001-7488.20190301 |
|
Ahmad B, Wang Y H, Hao J, et al. Optimizing stand structure for tradeoffs between overstory and understory vegetation biomass in a larch plantation of Liupan Mountains, northwest China. Forest Ecology and Management, 2019, 443 (4): 3- 50. | |
Ahmad B, Wang Y H, Hao J, et al. Optimizing stand structure for trade-offs between overstory timber production and understory plant diversity: a case-study of a larch plantation in northwest China. Land Degradation and Development, 2018, 29 (9): 2998- 3008.
doi: 10.1002/ldr.3070 |
|
Anderson T. Microbial eco-physiological indicators to assess soil quality. Agriculture Ecosystems and Environment, 2003, 98 (1/3): 285- 293. | |
Ares A, Neill A R, Puettmann K J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. Forest Ecology and Management, 2010, 260 (7): 1104- 1113.
doi: 10.1016/j.foreco.2010.06.023 |
|
Baldrian P, Šnajdr J, Merhautová V, et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology and Biochemistry, 2013, 56, 60- 68.
doi: 10.1016/j.soilbio.2012.01.020 |
|
Bastida F, Torres I F, Andrés-Abellán M, et al. Differential sensitivity of total and active soil microbial communities to drought and forest management. Global Change Biology, 2017, 23 (10): 4185- 4203.
doi: 10.1111/gcb.13790 |
|
Bengtsson-Palme J, Ryberg M, Hartmann M, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 2013, 4 (10): 914- 919. | |
Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 2009, 15 (4): 808- 824.
doi: 10.1111/j.1365-2486.2008.01681.x |
|
Burton J, Chen C R, Xu Z H, et al. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. Journal of Soils and Sediments, 2010, 10 (7): 1267- 1277.
doi: 10.1007/s11368-010-0238-y |
|
Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 2012, 6 (8): 1621- 1624.
doi: 10.1038/ismej.2012.8 |
|
Clemmensen K, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 2013, 339 (6127): 1615- 1618.
doi: 10.1126/science.1231923 |
|
Crowther T W, Boddy L, Jones T H. Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME Journal, 2012, 6 (11): 1992- 2001.
doi: 10.1038/ismej.2012.53 |
|
Dai X, Fu X, Kou L, et al. C: N: P stoichiometry of rhizosphere soils differed significantly among overstory trees and understory shrubs in plantations in subtropical China. Canadian Journal of Forest Research, 2018, 48 (11): 1398- 1405.
doi: 10.1139/cjfr-2018-0095 |
|
Dang P, Gao Y, Liu J. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Science of the Total Environment, 2018, 630, 171- 180.
doi: 10.1016/j.scitotenv.2018.02.197 |
|
De Vries F T, Griffiths R I, Mark B, et al. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9 (1): 3033.
doi: 10.1038/s41467-018-05516-7 |
|
Delgado-Baquerizo M, Eldridge D J, Ochoa V, et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letter, 2017, 20 (10): 1295- 1305.
doi: 10.1111/ele.12826 |
|
Delgado-Baquerizo M, Reich P B, Trivedi C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4 (2): 210- 220.
doi: 10.1038/s41559-019-1084-y |
|
Ganatsios H P, Tsioras P A, Pavlidis T. Water yield changes as a result of silvicultural treatments in an oak ecosystem. Forest Ecology and Management, 2010, 260 (8): 1367- 1374.
doi: 10.1016/j.foreco.2010.07.033 |
|
Gardes M, Bruns T D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology, 1993, 2 (2): 113- 118.
doi: 10.1111/j.1365-294X.1993.tb00005.x |
|
Gavinet J, Ourcival J M, Gauzere J, et al. Drought mitigation by thinning: Benefits from the stem to the stand along 15 years of experimental rainfall exclusion in a holm oak coppice. Forest Ecology and Management, 2020, 473, 118266.
doi: 10.1016/j.foreco.2020.118266 |
|
Giguère-Tremblay R, Laperriere G, de Grandpré A, et al. Boreal forest multifunctionality is promoted by low soil organic matter content and high regional bacterial biodiversity in northeastern Canada. Forests, 2020, 11 (12): 1- 18. | |
Guhr A, Borken W, Spohn M, et al. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (47): 14647- 14651.
doi: 10.1073/pnas.1514435112 |
|
Haughian S R, Frego K A. Short-term effects of three commercial thinning treatments on diversity of understory vascular plants in white spruce plantations of northern New Brunswick. Forest Ecology and Management, 2016, 370, 45- 55.
doi: 10.1016/j.foreco.2016.03.055 |
|
Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality. Nature, 2007, 448 (7150): 188- 190.
doi: 10.1038/nature05947 |
|
Jansson J K, Hofmockel K S. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18 (1): 35- 46.
doi: 10.1038/s41579-019-0265-7 |
|
Jiménez M N, Spotswood E N, Cañadas E M, et al. Stand management to reduce fire risk promotes understorey plant diversity and biomass in a semi-arid Pinus halepensis plantation . Applied Vegetation Science, 2015, 18 (3): 467- 480.
doi: 10.1111/avsc.12151 |
|
Jing X, Sanders N J, Shi Y, et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 2015, 6, 8159.
doi: 10.1038/ncomms9159 |
|
Karlen D L, Mausbach M J, Doran J W, et al. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 1997, 61 (1): 4- 10.
doi: 10.2136/sssaj1997.03615995006100010001x |
|
Kebli H, Brais S, Kernaghan G, et al. Impact of harvesting intensity on wood-inhabiting fungi in boreal aspen forests of Eastern Canada. Forest Ecology and Management, 2012, 279, 45- 54.
doi: 10.1016/j.foreco.2012.05.028 |
|
Kim S, Li G, Han S H, et al. Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora Sieb . et Zucc. forests after 7 years. Annals of Forest Science, 2018, 75 (1): 13. | |
Kim S, Li G, Han S H, et al. Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes. Science of the Total Environment, 2019, 651, 2068- 2079.
doi: 10.1016/j.scitotenv.2018.10.153 |
|
Kyaschenko J, Clemmensen K E, Karltun E, et al. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecology Letters, 2017, 20 (12): 1546- 1555.
doi: 10.1111/ele.12862 |
|
Li J, Delgado-Baquerizo M, Wang J T, et al. Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biology and Biochemistry, 2019, 136, 107526.
doi: 10.1016/j.soilbio.2019.107526 |
|
Li M H, Guo J J, Ren T, et al. 2021. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agriculture, Ecosystems and Environment, 319: 107550. | |
Lin W R, Wang P H, Chen W C, et al. Responses of soil fungal populations and communities to the thinning of Cryptomeria japonica forests . Microbes and Environments, 2016, 31 (1): 19- 26.
doi: 10.1264/jsme2.ME15127 |
|
Lladó S, López-Mondéjar R, Baldrian P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 2017, 81 (2): 1- 27. | |
Ma J Y, Kang F F, Cheng X Q, et al. Moderate thinning increases soil organic carbon in Larix principis–rupprechtii (Pinaceae)plantations . Geoderma, 2018, 329, 118- 128.
doi: 10.1016/j.geoderma.2018.05.021 |
|
Ma S, Concilio A, Oakley B, et al. Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. Forest Ecology and Management, 2010, 259 (5): 904- 915.
doi: 10.1016/j.foreco.2009.11.030 |
|
Mohan J E, Cowden C C, Baas P, et al. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology, 2014, 10 (1): 3- 19. | |
Mosca E, Montecchio L, Sella L, et al. Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest(Quercus robur L . ). Forest Ecology and Management, 2007, 244, 129- 140.
doi: 10.1016/j.foreco.2007.04.019 |
|
Mushinski R M, Gentry T J, Boutton T W. Organic matter removal associated with forest harvest leads to decade scale alterations in soil fungal communities and functional guilds. Soil Biology and Biochemistry, 2018, 127, 127- 136.
doi: 10.1016/j.soilbio.2018.09.019 |
|
Niu X Y, Sun X M, Chen D S, et al. Mixing litter from Larix kaempferi (Lamb . ) Carr. and broad-leaved trees enhances decomposition by different mechanisms in temperate and subtropical alpine regions of China. Plant and soil, 2020, 452 (1/2): 43- 60. | |
Overby S T, Owen S M, Hart S C. Soil microbial community resilience with tree thinning in a 40-year-old experimental ponderosa pine forest. Applied Soil Ecology, 2015, 93, 1- 10.
doi: 10.1016/j.apsoil.2015.03.012 |
|
Parladé J, Queralt M, Pera J, et al. Temporal dynamics of soil fungal communities after partial and total clear-cutting in a managed Pinus sylvestris stand . Forest Ecology and Management, 2019, 449, 117456.
doi: 10.1016/j.foreco.2019.117456 |
|
Peco B, Navarro E, Carmona C P, et al. 2017. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agriculture, Ecosystems and Environment, 249: 215–225. | |
Preece C, Verbruggen E, Liu L. Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology and Biochemistry, 2019, 131 (6): 28- 39. | |
Rasmussen A L, Brewer J S, Jackson C R, et al. Tree thinning and fire affect ectomycorrhizal fungal communities and enzyme activities. Ecosphere, 2018, 9, e02471. | |
Romaniuk R, Giuffré L, Costantini A, et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecological Indicators, 2011, 11 (5): 1345- 1353.
doi: 10.1016/j.ecolind.2011.02.008 |
|
Singh A K, Rai A, Banyal R, et al. Plant community regulates soil multifunctionality in a tropical dry forest. Ecological Indicators, 2018, 95, 953- 963.
doi: 10.1016/j.ecolind.2018.08.030 |
|
Treseder K K, Holden S R. Fungal carbon sequestration. Science, 2013, 340 (6127): 1528- 1529. | |
Treseder K K, Marusenko Y, Romero-Olivares A L, et al. Experimental warming alters potential function of the fungal community in boreal forest. Global Change Biology, 2016, 22 (10): 3395- 3404.
doi: 10.1111/gcb.13238 |
|
Urbanová M, Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 2015, 84, 53- 64.
doi: 10.1016/j.soilbio.2015.02.011 |
|
Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications, 2004, 14 (4): 1172- 1177.
doi: 10.1890/03-5120 |
|
Wang D, Olatunji O A, Xiao J L. Thinning increased fine root production, biomass, turnover rate and understory vegetation yield in a Chinese fir plantation. Forest Ecology and Management, 2019, 444, 92- 100. | |
Warren C R, McGrath J F, Adams M A. Water availability and carbon isotope discrimination in conifers. Oecologia, 2001, 127 (4): 476- 486.
doi: 10.1007/s004420000609 |
|
Weng S H, Kuo S R, Guan B T, et al. Microclimatic responses to different thinning intensities in a Japanese cedar plantation of northern Taiwan. Forest Ecology and Management, 2007, 241, 91- 100.
doi: 10.1016/j.foreco.2006.12.027 |
|
Xu H D, Yu M K, Cheng X R. Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations. Ecological Indicators, 2021a, 129, 107932.
doi: 10.1016/j.ecolind.2021.107932 |
|
Xu M, Li X L, Kuyper T W, et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 2021b, 27 (10): 2061- 2075.
doi: 10.1111/gcb.15553 |
|
Zhang X Z, Guan D X, Li W B, et al. The effects of forest thinning on soil carbon stocks and dynamics: a meta–analysis. Forest Ecology and Management, 2018, 429, 36- 43.
doi: 10.1016/j.foreco.2018.06.027 |
|
Zhou L L, Cai L P, He Z M, et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China. Environmental Science and Pollution Research, 2016, 23 (23): 24135- 24150.
doi: 10.1007/s11356-016-7624-y |
|
Zhou Z H, Wang C K, Ren C J, et al. Effects of thinning on soil saprotrophic and ectomycorrhizal fungi in a Korean larch plantation. Forest Ecology and Management, 2020, 461, 117920.
doi: 10.1016/j.foreco.2020.117920 |
[1] | 崔朝伟,彭丽鸿,马东旭,王佳琪,江祥庆,江先桂,马祥庆,林开敏. 间伐对杉木人工林土壤微生物残体碳的影响[J]. 林业科学, 2023, 59(5): 41-52. |
[2] | 彭金根,龚金玉,范玉海,张华,张银凤,白宇清,王艳梅,谢利娟. 毛棉杜鹃根际与非根际土壤微生物群落多样性[J]. 林业科学, 2022, 58(2): 89-99. |
[3] | 曹俐,王阳,杨蕴力,郑雨,王伟,刘桂丰,姜静. 转BpGLK裂叶桦生长变异、根际土壤酶活性及微生物群落组成[J]. 林业科学, 2022, 58(12): 21-31. |
[4] | 陈永忠,刘彩霞,许彦明,张震,彭映赫,陈隆升,苏以荣,王瑞,唐炜. 生草栽培对油茶林土壤微生物群落结构和稳定性的影响[J]. 林业科学, 2022, 58(11): 61-70. |
[5] | 张伟溪,王颜波,丁昌俊,朱文旭,苏晓华. 成龄转基因银中杨试验林外源基因水平转移及土壤微生物连年监测[J]. 林业科学, 2022, 58(1): 52-61. |
[6] | 张梦娇,史帅营,刘政安,朱学玲,范昆,史国安. 间伐对'凤丹’牡丹生长、籽粒产量及品质的影响[J]. 林业科学, 2022, 58(1): 162-174. |
[7] | 郑翔,曹敏敏,纪小芳,方万力,刘胜龙,姜姜. 森林土壤氧化亚氮排放对磷添加响应的研究进展[J]. 林业科学, 2021, 57(6): 150-157. |
[8] | 谢云,郭芳芸,陈丽华,曹兵. 大气CO2浓度升高对宁夏枸杞根区土壤微生物功能多样性及碳源利用特征的影响[J]. 林业科学, 2021, 57(4): 163-172. |
[9] | 李益,冯秀秀,赵发珠,郭垚鑫,王俊,任成杰. 秦岭太白山不同海拔锐齿栎林土壤微生物群落的变化特征[J]. 林业科学, 2021, 57(12): 22-31. |
[10] | 徐军亮,竹磊,师志强,武靖,章异平. 栓皮栎粗根和茎干中非结构性碳水化合物含量的调配关系[J]. 林业科学, 2021, 57(1): 200-206. |
[11] | 陈奕帆,付晓莉,王辉民,戴晓琴,寇亮,陈伏生,卜文圣. 林下植被清除对不同径级中龄杉木生长速率的影响机制[J]. 林业科学, 2020, 56(11): 21-30. |
[12] | 张晓红,张会儒,卢军,雷相东. 目标树抚育间伐对蒙古栎天然次生林生长的初期影响[J]. 林业科学, 2020, 56(10): 83-92. |
[13] | 薛亚东,李迪强,李佳. 基于卫星追踪定位技术的库姆塔格沙漠野骆驼生境利用和迁移规律[J]. 林业科学, 2020, 56(10): 192-198. |
[14] | 叶钰倩, 赵家豪, 刘畅, 关庆伟. 间伐强度对马尾松人工林根际与非根际土壤中性糖特征的影响[J]. 林业科学, 2019, 55(8): 28-35. |
[15] | 丁令智, 满秀玲, 肖瑞晗, 蔡体久. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化[J]. 林业科学, 2019, 55(7): 178-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||