林业科学 ›› 2022, Vol. 58 ›› Issue (3): 86-96.doi: 10.11707/j.1001-7488.20220310
贾斐然,周忠福,赵文霞,孙荟荃,姚艳霞*
收稿日期:
2021-05-16
出版日期:
2022-03-25
发布日期:
2022-06-02
通讯作者:
姚艳霞
基金资助:
Feiran Jia,Zhongfu Zhou,Wenxia Zhao,Huiquan Sun,Yanxia Yao*
Received:
2021-05-16
Online:
2022-03-25
Published:
2022-06-02
Contact:
Yanxia Yao
摘要:
目的: 明确不同虫态、不同环境苹小吉丁自然种群肠道真菌和细菌种类组成及其可能对宿主生长发育和生理变化的影响。方法: 分别将新疆野果林(W)和栽培果园(C)获取的成虫(A)与幼虫(L)进行完整肠道解剖,利用Illumina MiSeq技术对ITS2基因(真菌)和16S rRNA V3-V4变异区(细菌)进行测定,统计肠道微生物的操作分类单元(operational taxonomic unit,OTU)数量,分析物种丰度、组成及Alpha多样性,并运用PICRUSt2对其功能进行预测。结果: 获得苹小吉丁肠道真菌ITS2优质序列177 028条,细菌16S rRNA优质序列253 712条,聚类分析分别获得285和1 470个OTUs。最终注释到真菌5门22纲50目92科122属,细菌40门103纲231目364科594属。从属级水平来看,不同虫态、不同环境苹小吉丁肠道微生物各具特有的真菌和细菌类群,其中,其中CA特有真菌11属,特有细菌2属;CL特有真菌28属,特有细菌223属;WA特有真菌37属,特有细菌47属;WL特有真菌12属,特有细菌68属,而核心菌群中真菌7属,细菌21属。多样性分析结果表明野果林苹小吉丁肠道真菌群落丰富度和物种多样性成虫均大于幼虫,细菌群落丰富度成虫小于幼虫,但物种多样性成虫却大于幼虫,同时苹小吉丁幼虫肠道微生物群落丰富度和物种多样性在栽培果园远大于野果林。此外,通过MetaCyc Pathway注释74条真菌代谢通路,426条细菌代谢通路;通过KEGG注释868条真菌代谢通路,2 188条细菌代谢通路。结论: 不同虫态、不同环境苹小吉丁肠道真菌和细菌种类与丰度均存在差异,肠道真菌种类和丰度成虫大于幼虫,而细菌幼虫大于成虫,说明真菌对于成虫的生长发育起着关键性作用,而细菌对于幼虫的生长发育起着关键性作用。此外,不同的肠道微生物结构与组成,呈现出大致相同的功能,因此推测在苹小吉丁肠道中发挥功能的为一些固定类群,这可能是与其宿主长期协同进化的结果。
中图分类号:
贾斐然,周忠福,赵文霞,孙荟荃,姚艳霞. 苹小吉丁自然种群肠道微生物多样性[J]. 林业科学, 2022, 58(3): 86-96.
Feiran Jia,Zhongfu Zhou,Wenxia Zhao,Huiquan Sun,Yanxia Yao. Diversity of Gut Microorganisms in Natural Population of Agrilus mali (Coleoptera: Buprestidae)[J]. Scientia Silvae Sinicae, 2022, 58(3): 86-96.
表2
不同寄主不同虫态苹小吉丁肠道真菌ITS2和细菌16S rRNA高通量测序基本信息"
样本编号 Sample code | 基因 Gene | 原始标签数 Number of raw tags | 有效标签数 Number of valid tags | OTU数 Number of OTUs | 不同分类阶元分类单元数目 Number of taxa of different taxonomic categories | ||||
门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | |||||
CA | ITS2 | 72 974 | 72 513 | 43 | 3 | 10 | 16 | 26 | 33 |
16S rRNA | 31 988 | 31 348 | 19 | 4 | 5 | 9 | 13 | 16 | |
CL | ITS2 | 61 586 | 60 313 | 79 | 5 | 16 | 27 | 43 | 51 |
16S rRNA | 50 973 | 41 074 | 894 | 36 | 87 | 200 | 305 | 453 | |
WA | ITS2 | 64 390 | 62 665 | 58 | 4 | 12 | 19 | 32 | 36 |
16S rRNA | 49 520 | 5 468 | 266 | 25 | 47 | 91 | 145 | 209 | |
WL | ITS2 | 54 762 | 53 615 | 105 | 4 | 16 | 36 | 53 | 62 |
16S rRNA | 44 547 | 38 169 | 291 | 20 | 40 | 86 | 133 | 255 |
表3
不同寄主不同虫态苹小吉丁肠道内真菌和细菌多样性指数统计"
类群 Groups | 样本编号 Sample code | 多样性指数 Diversity indices | ||||
Shannon | Simpson | Ace | Chao | Coverage | ||
真菌 Fungi | CA | 1.20 | 0.47 | 41.67 | 42.00 | 0.999 9 |
CL | 3.26 | 0.07 | 70.00 | 70.00 | 1.000 0 | |
WA | 3.18 | 0.09 | 98.00 | 98.00 | 1.000 0 | |
WL | 2.89 | 0.15 | 53.25 | 53.00 | 0.998 8 | |
细菌 Bacteria | CA | 0.80 | 0.49 | 37.23 | 24.25 | 0.998 7 |
CL | 3.47 | 0.16 | 894.64 | 717.56 | 0.962 5 | |
WA | 3.57 | 0.08 | 278.88 | 273.77 | 0.994 5 | |
WL | 2.46 | 0.24 | 397.08 | 373.73 | 0.980 8 |
表4
不同寄主不同虫态苹小吉丁肠道内COG预测功能类别占比"
类别 Category | 描述 Description | 样本 Sample(%) | |||
CA | CL | WA | WL | ||
M | 细胞壁/膜/膜生物发生 Cell wall/membrane/envelope biogenesis | 8.08 | 21.43 | 31.98 | 38.50 |
H | 辅酶转运与代谢 Coenzyme transport and metabolism | 6.43 | 19.99 | 40.60 | 32.97 |
A | RNA加工与修饰 RNA processing and modification | 11.54 | 27.90 | 4.91 | 55.65 |
Q | 次生代谢物生物合成、运输和分解代谢 Secondary metabolites biosynthesis, transport and catabolism | 6.62 | 20.34 | 32.38 | 40.66 |
G | 碳水化合物运输和代谢 Carbohydrate transport and metabolism | 11.41 | 19.47 | 26.22 | 42.89 |
V | 防御机制 Defense mechanisms | 6.22 | 21.68 | 36.71 | 35.39 |
T | 信号转导机制 Signal transduction mechanisms | 7.02 | 20.56 | 41.78 | 30.65 |
D | 细胞周期控制,细胞分裂,染色体分割 Cell cycle control, cell division, chromosome partitioning | 8.78 | 22.97 | 33.78 | 34.47 |
Z | 细胞骨架 Cytoskeleton | 0.07 | 16.52 | 17.65 | 65.76 |
B | 染色质结构与动力学 Chromatin structure and dynamics | 0.08 | 21.26 | 57.19 | 21.47 |
K | 转录 Transcription | 9.13 | 22.34 | 25.14 | 43.39 |
N | 细胞运动 Cell motility | 11.51 | 27.56 | 24.76 | 36.17 |
C | 能源生产和转换 Energy production and conversion | 6.95 | 22.64 | 34.08 | 36.33 |
F | 核苷酸转运与代谢 Nucleotide transport and metabolism | 7.08 | 20.78 | 35.40 | 36.75 |
L | 复制、重组和修复 Replication, recombination and repair | 7.57 | 22.15 | 34.12 | 36.16 |
J | 翻译、核糖体结构与生物发生 Translation, ribosomal structure and biogenesis | 6.78 | 22.61 | 37.28 | 33.32 |
O | 翻译后修饰、蛋白质周转、伴侣 Posttranslational modification, protein turnover, chaperones | 6.64 | 20.33 | 39.57 | 33.46 |
S | 功能未知 Function unknown | 8.16 | 19.36 | 33.31 | 39.17 |
W | 细胞外结构 Extracellular structures | 0.00 | 9.89 | 22.46 | 67.65 |
P | 无机离子转运与代谢 Inorganic ion transport and metabolism | 8.83 | 18.98 | 31.41 | 40.77 |
E | 氨基酸转运与代谢 Amino acid transport and metabolism | 7.90 | 20.67 | 30.04 | 41.38 |
I | 脂质转运与代谢 Lipid transport and metabolism | 6.70 | 24.99 | 30.09 | 38.22 |
U | 细胞内运输、分泌和囊泡运输 Intracellular trafficking, secretion, and vesicular transport | 7.26 | 24.23 | 31.11 | 37.40 |
曹乐, 宁康. 昆虫肠道的宏基因组学: 微生物大数据的新疆界. 微生物学报, 2018, 58 (6): 964- 984. | |
Cao L , Ning K . Metagenomics of insect gut: new borders of microbial big data. Acta Microbiologica Sinica, 2018, 58 (6): 964- 984. | |
崔志军, 张彦龙, 罗朝辉, 等. 苹果小吉丁虫(Agrilus mali Matsumura)对野苹果林的危害及其评估. 干旱区研究, 2018, 35 (5): 1153- 1159. | |
Cui Z J , Zhang Y L , Luo Z H , et al. The regional damage and assessment of the buprestid Agrilus mali matsumura on wild apple forest. Arid Zone Research, 2018, 35 (5): 1153- 1159. | |
黄胜威. 2012. 暗黑鳃金龟幼虫肠道微生物分子多态性及纤维素降解菌多样性研究. 武汉: 华中农业大学. | |
Huang S W. 2012. Study on microbiota diversity and cellulolytic bacterial community in the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Wuhan: Huazhong Agricultural University. [in Chinese] | |
李利平, 海鹰, 安尼瓦尔·买买提, 等. 新疆伊犁地区野果林的群落特征及保护. 干旱区研究, 2011, 28 (1): 60- 66. | |
Li L P , Hai Y , Anwar M , et al. Community structure and conservation of wild fruit forests in the Hi valley, Xinjiang. Arid Zone Research, 2011, 28 (1): 60- 66. | |
林海云, 车建美, 刘波, 等. 青枯雷尔氏菌致病机制及其相关基因的研究进展. 福建农业学报, 2011, 26 (5): 899- 906.
doi: 10.3969/j.issn.1008-0384.2011.05.044 |
|
Lin H Y , Che J M , Liu B , et al. Advances research in Ralsronia solanacearum Pathogenicity Mechanism and Related Genes. Fujian Journal of Agriculture Sciences, 2011, 26 (5): 899- 906.
doi: 10.3969/j.issn.1008-0384.2011.05.044 |
|
林培钧, 崔乃然. 天山野果林资源—伊犁野果林综合研究. 北京: 中国林业出版社, 2000. | |
Lin P J , Cui N R . Wild fruit foreste in Tianshan Mountains-comprehensive research on wild forests in Hi, Xinjiang, China. Beijing: China Forestry Publishing, 2000. | |
钱伯钦. 假单胞菌属的新问题. 国外医学(微生物学分册), 1986, (3): 137- 138. | |
Qian B Q . New problems of Pseudomonas. Foreign Medicine (Microbiology Section), 1986, (3): 137- 138. | |
王丹丹, 王清明. 丁香假单胞菌的分子生物学研究进展. 西北农业学报, 2017, 26 (4): 487- 496. | |
Wang D D , Wang Q M . Research advances molecular biology in Pseudomonas syringae. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26 (4): 487- 496. | |
王四宝, 曲爽. 昆虫共生菌及其在病虫害防控中的应用前景. 中国科学院院刊, 2017, 32 (8): 863- 872. | |
Wang S B , Qu S . Insect symbionts and their potential application in pest and vector-borne disease control. Bulletin of Chinese Academy of Sciences, 2017, 32 (8): 863- 872. | |
王智勇. 2013. 新疆野苹果林苹小吉丁生物防治技术研究. 北京: 中国林业科学研究院. | |
Wang Z Y. 2013. Researchs on biological control of Agrilus mali Matsumura (Coleoptera: Buprestidae) in stands of Malus sieversii in Xinjiang. Beijing China ese Academy of Forestry. [in Chinese] | |
王争艳, 王洋, 何梦婷, 等. 不同地理种群赤拟谷盗肠道细菌群落多样性分析. 应用昆虫学报, 2020, (3): 617- 622. | |
Wang Z Y , Wang Y , He M T , et al. Diversity of intestinal bacteria in different geographic populations of Tribolium castaneum (Coleoptera: Tenebrionidae). Chinese Journal of Applied Entomology, 2020, (3): 617- 622. | |
杨文, 陈瑶, 陈小均, 等. 茎点霉真菌Phoma adianticola引起的一种茶树新病害. 茶叶科学, 2016, 36 (1): 9. | |
Yang W , Chen Y , Chen X J , et al. A new disease of tea plant caused by Phoma adianticola. Journal of Tea Science, 2016, 36 (1): 9. | |
张筠, 刘宁, 孟祥晨. 德氏乳杆菌保加利亚亚种胞外多糖抗肿瘤免疫调节作用. 营养学报, 2009, 31 (3): 267- 270. | |
Zhang J , Liu N , Men X C . The antitumour and immunomodulating effect of exopolysaccharides produced by Lactobacillus delbruecckii ssp. bulgaricus. Acta Nutrimenta Sinica, 2009, 31 (3): 267- 270. | |
张静, 张博. 昆虫肠道微生物研究进展. 科技创新与应用, 2017, (5): 50. | |
Zhang J , Zhang B . Advance of insect gut microorganisms. Technology Innovation and Application, 2017, (5): 50. | |
张军毅, 朱冰川, 徐超, 等. 基于分子标记的宏基因组16S rRNA基因高变区选择策略. 应用生态学报, 2015, 26 (11): 3545- 3553. | |
Zhang J Y , Zhu B C , Xu C , et al. Strategy of selecting 16S rRNA hypervariable regions for matagenome-phylogenetic marker genes based analysis. Chinese Journal of Applied Ecology, 2015, 26 (11): 3545- 3553. | |
周忠福, 赵文霞, 林若竹, 等. 新疆野生苹果林苹小吉丁的伴生真菌多样性. 林业科学, 2020, 56 (7): 82- 90. | |
Zhou Z F , Zhao W X , Lin R Z , et al. Diversity of associated fungi of Agrilus mali (Coleoptera: Buprestidae) in wild apple forests of Xinjiang. Scientia Silvae Sinicae, 2020, 56 (7): 82- 90. | |
Blaalid R , Kumar S , Nilsson R H , et al. ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 2013, 13 (2): 218- 224.
doi: 10.1111/1755-0998.12065 |
|
Bozorov T A , Rasulov B A , Zhang D . Characterization of the gut microbiota of invasive Agrilus mali Matsumara (Coleoptera: Buprestidae) using high-throughput sequencing: uncovering plant cell-wall degrading bacteria. Scientific Rep ovts, 2019, 9 (1): 4923.
doi: 10.1038/s41598-019-41368-x |
|
Briard B , Heddergott C , Latgé JP . Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio, 2016, 7 (2): e00219. | |
Brummel T , Ching A , Seroude L , et al. Drosophila lifespan enhancement by exogenous bacteria. Proceedings of the National Academy of Sciences, 2004, 101 (35): 12974- 12979.
doi: 10.1073/pnas.0405207101 |
|
Cheng Y , Zhao W X , Lin R Z , et al. Fusarium species in declining wild apple forests on the northern slope of the Tian Shan Mountains in north-western China. Forest Pathology, 2019, 49 (5): e12542.
doi: 10.1111/efp.12542 |
|
Colman D R , Toolson E C , Takacs-Vesbach C D . Do diet and taxonomy influence insect gut bacterial communities?. Molecular Ecology, 2012, 21 (20): 5124- 5137.
doi: 10.1111/j.1365-294X.2012.05752.x |
|
Dong Y , Manfredini F , Dimopoulos G . Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathogens, 2009, 5 (5): e1000423.
doi: 10.1371/journal.ppat.1000423 |
|
Douglas A E . Multi organismal insects: diversity and function of resident microorganisms. Annual Review of Entomology, 2015, 60 (1): 17.
doi: 10.1146/annurev-ento-010814-020822 |
|
Engel P , Moran N A . The gut microbiota of insects-diversity in structure and function. FEMS Microbiol Rev, 2013, 37 (5): 699- 735.
doi: 10.1111/1574-6976.12025 |
|
Hammer T J , Bowers M D . Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 2015, 179 (1): 1- 14.
doi: 10.1007/s00442-015-3327-1 |
|
Hong P Y , Wheeler E , Cann I K O , et al. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. Isme Journal, 2011, 5 (9): 1461.
doi: 10.1038/ismej.2011.33 |
|
Hosokawa T , Kikuchi Y , Fukatsu T . How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect-bacterium mutualism?. Molecular Ecology, 2010, 16 (24): 5316- 5325. | |
Kikuchi Y , Hosokawa T , Fukatsu T . Insect-Microbe Mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Applied and Environmental Microbiology, 2007, 73 (13): 4308- 4316.
doi: 10.1128/AEM.00067-07 |
|
Olofsson T C , Vasquez A . Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 2008, 57 (4): 356- 363.
doi: 10.1007/s00284-008-9202-0 |
|
Pang X , Fu S J , Li X M , et al. The effects of starvation and re-feeding on growth and swimming performance of juvenile black carp (Mylopharyngodon piceus). Fish Physiology and Biochemistry, 2016, 42 (4): 1203- 1212.
doi: 10.1007/s10695-016-0210-x |
|
Peterson B F , Scharf M E . Lower Termite associations with microbes: synergy, protection, and interplay. Frontiers in Microbiology, 2016, 7, e6577. | |
Shukla S P , Sanders J G , Byrne M J , et al. Gut microbiotaof dung beetles correspond to dietary specializations of adults and larvae. Molecular Ecology, 2016, 25 (24): 6092- 6106.
doi: 10.1111/mec.13901 |
|
Suárez-Moo P , Cruz-Rosales M , Ibarra-Laclette E , et al. Diversity and composition of the gut microbiota in the developmental stages of the dung beetle Copris incertus Say (Coleoptera, Scarabaeidae). Frontiers in Microbiology, 2020, 11, 1698.
doi: 10.3389/fmicb.2020.01698 |
|
Tsuchida A. 2002. Gut-clamping mechanism in gut-stretching equipment for tennis rackets. US, LIS639867482. | |
Wang X , Gao Q , Wang W , et al. The gut bacteria across life stages in the synanthropic fly Chrysomya megacephala. BMC Microbiologg, 2018, 18 (1): 131.
doi: 10.1186/s12866-018-1272-y |
|
Xia X , Zheng D , Zhong H , et al. DNA sequencing reveals the midgut microbiota of Diamondback Moth, Plutella Xylostella (L.) and a possible relationship with insecticide resistance. PLoS One, 2013, 8 (7): e68852.
doi: 10.1371/journal.pone.0068852 |
|
Zhang Z Q , Jiao S , Li X , et al. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Scientific Reports, 2018, 8 (1): 1- 11. |
[1] | 刘晨,张春雨,赵秀海. 采伐干扰对吉林蛟河针阔混交林生产力稳定性的影响[J]. 林业科学, 2022, 58(3): 1-9. |
[2] | 李聪,吕晶花,陆梅,杨志东,刘攀,任玉连,杜凡. 文山国家级自然保护区不同海拔地带性植被的土壤微生物生物量碳氮分布特征[J]. 林业科学, 2022, 58(3): 20-30. |
[3] | 彭金根,龚金玉,范玉海,张华,张银凤,白宇清,王艳梅,谢利娟. 毛棉杜鹃根际与非根际土壤微生物群落多样性[J]. 林业科学, 2022, 58(2): 89-99. |
[4] | 方旋,温敬伟,陈粤,范敏,马星霞. 南越国宫署遗址出土木质水槽原位保存环境下的真菌多样性[J]. 林业科学, 2021, 57(7): 131-141. |
[5] | 张燕林,黄彩凤,包明琢,周垂帆,何宗明. 生物炭及其老化对杉木林土壤养分含量和微生物群落组成影响的室内模拟[J]. 林业科学, 2021, 57(6): 169-179. |
[6] | 杜超群,孙晓梅,谢允慧,侯义梅. 北亚热带日本落叶松不同改良水平群体的遗传多样性[J]. 林业科学, 2021, 57(5): 68-76. |
[7] | 董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源. 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局[J]. 林业科学, 2021, 57(2): 168-178. |
[8] | 龚金玉,彭金根,谢利娟,张银凤,李朝婵,王艳梅. 深圳梧桐山不同树势毛棉杜鹃根际土壤微生物多样性分析[J]. 林业科学, 2021, 57(11): 190-200. |
[9] | 庞荣荣,彭潔莹,闫琰. 太白山次生锐齿栎林地上生物量影响因素[J]. 林业科学, 2021, 57(10): 157-165. |
[10] | 刘生冬,史佳琦,董诗睿,吴新毅,孟庆繁,李燕,赵红蕊,靳英华. 吉林蛟河不同林分腐木甲虫(鞘翅目)多样性分析[J]. 林业科学, 2021, 57(1): 121-130. |
[11] | 赵中华,惠刚盈. 林分结构多样性研究进展[J]. 林业科学, 2020, 56(9): 143-152. |
[12] | 赵晓红,柴姗姗,张曼曼,范义昌,毛云飞,毛志泉,沈向. 施用贝壳粉对酸化土壤微生物多样性及平邑甜茶幼苗生长的影响[J]. 林业科学, 2020, 56(9): 153-163. |
[13] | 裴晓亚,MadukaNilakshi Jayasekara Arachchige,朱晨慧,王敦. 川西高原昆虫病原真菌的多样性[J]. 林业科学, 2020, 56(8): 73-79. |
[14] | 周忠福,赵文霞,林若竹,淮稳霞,姚艳霞. 新疆野生苹果林苹小吉丁的伴生真菌多样性[J]. 林业科学, 2020, 56(7): 82-90. |
[15] | 周晓君,张凯,彭正锋,孙姗姗,押辉远,张延召,程彦伟. 矮牡丹与芍药属其他5个种叶绿体基因组特征的比较[J]. 林业科学, 2020, 56(4): 82-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||