 
		林业科学 ›› 2021, Vol. 57 ›› Issue (4): 163-172.doi: 10.11707/j.1001-7488.20210417
谢云,郭芳芸,陈丽华,曹兵*
收稿日期:2020-01-06
									
				
									
				
									
				
											出版日期:2021-04-01
									
				
											发布日期:2021-05-21
									
			通讯作者:
					曹兵
												基金资助:Yun Xie,Fangyun Guo,Lihua Chen,Bing Cao*
Received:2020-01-06
									
				
									
				
									
				
											Online:2021-04-01
									
				
											Published:2021-05-21
									
			Contact:
					Bing Cao   
												摘要:
目的: 分析大气CO2浓度升高对宁夏枸杞根区土壤微生物功能多样性及碳源利用特征的影响,为宁夏枸杞适应气候变化进行可持续管理提供理论依据。方法: 以宁夏枸杞扦插苗为材料,采用开顶气室设置自然环境大气CO2浓度[CK,(400±20)μmol·mol-1]、0.5倍增[TR1,(600±20)μmol·mol-1]和1倍增[TR2,(800±20)μmol·mol-1]3个处理宁夏枸杞苗木,分别于处理后的30、60、90、120天采集根区土样,采用BIO-ECO技术分析土壤微生物群落功能多样性及碳源利用特征。结果: 1)CO2浓度升高均显著提高宁夏枸杞根区土壤微生物碳源代谢活性(AWCD),0.5倍增和1倍增大气CO2浓度AWCD分别比对照提高22.56%、36.45%。2)随着CO2浓度升高,土壤微生物Shannon指数、McIntosh指数显著增加,而Simpson指数在处理前期增加,但处理中后期无显著变化。3)宁夏枸杞根区土壤微生物群落利用并转化的主要碳源为氨基酸类、酯类和胺类碳源;CO2浓度升高处理下,土壤微生物利用率较大的碳源主要为酯类和胺类,而糖类和酸类利用率较低。其中1倍增大气CO2浓度下土壤微生物群落对L-精氨酸、L-天冬酰胺酸、吐温-40、苯乙基胺和4-羟基苯甲酸等的利用代谢能力均显著高于对照,但对γ-羟基丁酸的利用代谢能力显著低于对照。4)大气CO2浓度升高显著影响宁夏枸杞根区土壤微生物群落碳源利用率,不同时期将土壤微生物群落划分而起分异作用的主要碳源是糖类和胺类。结论: 大气CO2浓度升高能使微生物群落的活性及碳源利用率明显增加,并且均提高宁夏枸杞根区土壤微生物群落的物种丰富度、物种优势度及群落均匀度,1倍增大气CO2浓度处理土壤微生物群落代谢活性和多样性最高,六大类碳源中,氨基酸类、酯类和胺类碳源是宁夏枸杞根区土壤微生物群落利用并转化的主要碳源。处理60天时(7月份)土壤微生物群落碳源利用率最强。因此,大气CO2浓度升高是造成宁夏枸杞根区土壤微生物群落代谢多样性和碳源利用差异的主要原因。
中图分类号:
谢云,郭芳芸,陈丽华,曹兵. 大气CO2浓度升高对宁夏枸杞根区土壤微生物功能多样性及碳源利用特征的影响[J]. 林业科学, 2021, 57(4): 163-172.
Yun Xie,Fangyun Guo,Lihua Chen,Bing Cao. Effects of Elevated CO2 Concentration on Soil Microbial Functional Diversity and Carbon Source Utilization Characteristics in the Root Zone of Lycium barbarum[J]. Scientia Silvae Sinicae, 2021, 57(4): 163-172.
 
												
												表1
各样地土壤基本理化性质①"
| 处理Treatment | pH | 全碳Total C /(g·kg-1) | 全磷Total P/(g·kg-1) | 全氮Total N/(g·kg-1) | 速效磷Available P/(mg·kg-1) | 速效钾Available K/(mg·kg-1) | 碱解氮Alkali-hydrolyzable N/(mg·kg-1) | 有机质Organic matter/(g·kg-1) | 
| CK | 8.647±0.064a | 3.050±0.095a | 0.840±0.040a | 0.263±0.050a | 57.610±0.915a | 87.837±0.333a | 26.133±0.817a | 15.973±1.216a | 
| TR1 | 8.643±0.035a | 3.000±0.040a | 0.830±0.029a | 0.278±0.023a | 56.687±0.704a | 86.053±1.315a | 25.433±0.650a | 15.577±0.803a | 
| TR2 | 8.737±0.029a | 3.007±0.158a | 0.877±0.023a | 0.327±0.009a | 57.723±0.943a | 87.477±1.177a | 24.850±0.202a | 17.350± 0.689a | 
 
												
												表2
CO2浓度升高下土壤微生物功能多样性指数"
| 处理时间 Treatment time/d | 处理 Treatment | 平均颜色变化率 AWCD | 物种丰富度指数 Shannon index(H′) | 优势度指数 Simpson index(D) | 均匀度指数 McIntosh index(U) | 均一度指数 (E) | 
| 30 | CK | 1.014±0.081c | 2.573±0.218b | 0.807±0.076b | 6.472±0.489b | 0.813±0.070b | 
| TR1 | 1.473±0.034b | 3.169±0.015a | 0.954±0.005ab | 11.112±0.717a | 0.982±0.002ab | |
| TR2 | 1.673±0.034a | 3.469±0.108a | 0.970±0.013a | 11.447±1.212a | 0.921±0.032b | |
| 60 | CK | 1.159±0.124b | 2.864±0.089c | 0.926±0.034a | 7.615±0.475b | 0.796±0.053b | 
| TR1 | 1.408±0.043ab | 3.220±0.008b | 0.956±0.007a | 13.160±0.778a | 0.988±0.002a | |
| TR2 | 1.649±0.040a | 3.558±0.044a | 0.962±0.002a | 11.516±1.132a | 0.930±0.025a | |
| 90 | CK | 1.020±0.187b | 2.844±0.086b | 0.949±0.067a | 7.945±0.571b | 0.870±0.018b | 
| TR1 | 1.284±0.116b | 3.083±0.098b | 0.949±0.007a | 9.016±0.942b | 0.871±0.015b | |
| TR2 | 1.821±0.065a | 3.424±0.072a | 0.967±0.008a | 12.782±1.095a | 0.955±0.032a | |
| 120 | CK | 1.085±0.107b | 2.697±0.184b | 0.720±0.032b | 6.922±1.128b | 0.748±0.086b | 
| TR1 | 1.360±0.014ab | 3.172±0.010a | 0.954±0.006a | 9.138±0.197ab | 0.882±0.002ab | |
| TR2 | 1.590±0.098a | 3.218±0.025a | 0.957±0.001a | 11.256±1.157a | 0.939±0.025a | 
 
												
												表3
CO2浓度升高处理下宁夏枸杞根区土壤微生物PC1、PC2的碳源主成分载荷因子"
| 碳源类型 Category of carbon source | 代称 Synonym | 底物 Substrate | 30 d- PC1 | 30 d- PC2 | 60 d- PC1 | 60 d- PC2 | 90 d- PC1 | 90 d- PC2 | 120 d- PC1 | 120 d- PC2 | 
| 糖类Carbohydrate | A2 | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 0.149 | 0.243 | — | 0.160 | 0.218 | 0.053 | 0.236 | 0.037 | 
| B2 | D-木糖D-xylose | 0.139 | 0.260 | 0.222 | — | — | — | — | — | |
| E1 | α-环状糊精α-cyclodextrin | — | 0.028 | 0.125 | 0.248 | 0.083 | — | — | — | |
| F1 | 肝糖Glycogen | — | — | 0.218 | — | 0.191 | — | 0.229 | — | |
| G1 | D-纤维二糖D-cellobiose | 0.210 | — | — | 0.049 | 0.202 | 0.126 | — | 0.107 | |
| H1 | α-D-乳糖α-D-lactose | — | 0.087 | — | 0.085 | 0.221 | 0.012 | 0.160 | 0.203 | |
| G2 | 葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.193 | 0.137 | 0.006 | — | 0.213 | 0.081 | 0.190 | 0.165 | |
| 氨基酸类Amino acid | A4 | L-精氨酸L-arginine | 0.197 | — | 0.013 | 0.298 | 0.130 | 0.250 | 0.097 | — | 
| B4 | L-天冬酰胺酸L-asparaginic acid | 0.210 | — | — | — | 0.186 | — | 0.202 | 0.144 | |
| C4 | L-苯基丙氨酸L-phenylalanine | 0.205 | 0.073 | 0.083 | — | 0.207 | — | 0.237 | 0.029 | |
| D4 | L-丝氨酸L-serine | 0.201 | — | — | — | 0.186 | 0.166 | 0.155 | 0.207 | |
| E4 | L-苏氨酸L-threonine | 0.208 | — | — | — | 0.205 | — | 0.213 | 0.122 | |
| F4 | 甘胺酰-L-谷氨酸Glycyl-L-glutamic acid | 0.208 | — | — | 0.063 | 0.206 | — | 0.227 | 0.081 | |
| 酯类Ester | B1 | 丙酮酸甲酯Methyl pyruvate | 0.070 | 0.326 | 0.224 | — | 0.218 | — | 0.134 | — | 
| C1 | 吐温-40 Tween-40 | 0.098 | 0.305 | 0.100 | 0.268 | 0.146 | 0.231 | 0.041 | — | |
| D1 | 吐温-80 Tween-80 | — | 0.321 | 0.212 | 0.101 | 0.170 | 0.197 | 0.166 | — | |
| A3 | D-半乳糖酸γ内酯D-galactoside γ lactone | 0.209 | 0.041 | 0.211 | 0.102 | 0.209 | — | 0.066 | — | |
| 醇类Alcohol | C2 | I-赤藻糖醇I-erythritol | 0.076 | 0.322 | — | 0.130 | 0.217 | 0.059 | 0.234 | — | 
| D2 | D-甘露醇D-mannitol | 0.195 | — | — | — | — | 0.008 | 0.068 | 0.263 | |
| H2 | D, L-a-甘油D, L-a-glycerin | 0.103 | 0.301 | 0.060 | 0.288 | 0.214 | 0.077 | 0.110 | 0.243 | |
| 胺类Amine | G4 | 苯乙基胺Phenethylamine | 0.066 | — | 0.176 | — | — | 0.304 | 0.100 | 0.249 | 
| H4 | 腐胺Putrescine | 0.152 | — | — | 0.265 | 0.118 | 0.260 | — | — | |
| E2 | N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | 0.206 | 0.068 | — | — | 0.117 | — | — | 0.219 | |
| 酸类Acid | B3 | D-半乳糖醛酸D-galacturonic acid | 0.210 | — | — | — | 0.052 | 0.299 | 0.124 | 0.234 | 
| C3 | 2-羟基苯甲酸2-hydroxybenzoic acid | 0.171 | — | 0.183 | 0.173 | — | 0.274 | — | — | |
| D3 | 4-羟基苯甲酸4-hydroxybenzoic acid | 0.209 | 0.040 | 0.163 | — | 0.202 | — | 0.219 | — | |
| E3 | γ-羟基丁酸γ-hydroxybutyric acid | 0.207 | — | 0.225 | 0.001 | 0.127 | 0.252 | 0.057 | — | |
| F3 | 衣康酸Itaconic acid | 0.210 | — | — | 0.074 | 0.215 | 0.071 | — | 0.207 | |
| G3 | α-丁酮酸α-butanone acid | — | 0.088 | — | 0.030 | 0.158 | — | 0.232 | — | |
| H3 | D-苹果酸D-malic acid | — | 0.099 | 0.216 | — | 0.216 | — | — | 0.174 | |
| F2 | D-氨基葡萄糖酸D-glucosaminic acid | 0.210 | 0.019 | 0.224 | 0.019 | 0.218 | — | 0.238 | — | 
| 曹宏杰, 王立民, 徐明怡, 等. 五大连池新期火山熔岩台地不同植被类型土壤微生物群落功能多样性. 生态学报, 2019, 39 (21): 1- 11. | |
| Cao H J , Wang L M , Xu M Y , et al. Effect of vegetation type on the diversity of soil microbial communities at the new stage Volcanic Lava Platform, Wudalianchi area, Northeast China. Acta Ecologica Sinica, 2019, 39 (21): 1- 11. | |
| 党雯, 郜春花, 张强, 等. Biolog法测定土壤微生物群落功能多样性预处理方法的筛选. 中国农学通报, 2015, 16 (10): 2247- 2251, 2255. | |
| Dang W , Gao C H , Zhang Q , et al. Screening of preprocessing methods of biolog for soil microbial community functional diversity. Chinese Agricultural Science Bulletin, 2015, 16 (10): 2247- 2251, 2255. | |
| 邓娇娇, 朱文旭, 周永斌, 等. 不同土地利用模式对辽东山区土壤微生物群落多样性的影响. 应用生态学报, 2018, 29 (7): 2269- 2276. | |
| Deng J J , Zhu W X , Zhou Y B , et al. Effects of different land use patterns on soil microbial community diversity in montane region of eastern Liaoning Province, China. Chinese Journal of Applied Ecology, 2018, 29 (7): 2269- 2276. | |
| 房蕊, 鲁彩艳, 史奕. CO2和O3浓度升高对土壤碳水化合物累积分布特征的影响. 农业环境科学学报, 2010, 29 (S1): 285- 288. | |
| Fang R , Lu C Y , Shi Y . Effects of elevated CO2 and O3 on accumulation and distribution characteristics of soil carbohydrate. Journal of Agro-Environment Science, 2010, 29 (S1): 285- 288. | |
| 郭芳芸, 哈蓉, 马亚平, 等. CO2浓度升高对宁夏枸杞苗木光合特性及生物量分配影响. 西北植物学报, 2019, 39 (2): 302- 309. | |
| Guo F Y , Ha R , Ma Y P , et al. Effects of elevated CO2 concentration on photosynthetic characteristics and biomass allocation of Lycium barbarum seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39 (2): 302- 309. | |
| 哈蓉, 马亚平, 曹兵, 等. 模拟CO2浓度升高对宁夏枸杞营养生长与果实品质的影响. 林业科学, 2019, 55 (6): 28- 36. | |
| Ha R , Ma Y P , Cao B , et al. Effects of simulated elevated CO2 concentration on vegetative growth and fruit quality in Lycium barbarum. Scientia Silvae Sinicae, 2019, 55 (6): 28- 36. | |
| 贾夏, 董岁明, 周春娟.  微生物生态研究中Biolog Eco微平板培养时间对分析结果的影响. 应用基础与工程科学学报, 2013, 21 (1): 10- 19. doi: 10.3969/j.issn.1005-0930.2013.01.002 | |
| Jia X , Dong S M , Zhou C J . Effects of Biolog Eco-plates incubation time on analysis results in microbial ecology researches. Journal of Basic Science and Engineering, 2013, 21 (1): 10- 19. | |
| 雷霆, 周桔.  土壤微生物多样性影响因素及研究方法的现状与展望. 生物多样性, 2007, 15 (3): 306- 311. doi: 10.3321/j.issn:1005-0094.2007.03.012 | |
| Lei T ,  Zhou J .  Review and prospects on methodology and affecting factors of soil microbial diversity. Biodiversity Science, 2007, 15 (3): 306- 311. doi: 10.1360/biodiv.070069 | |
| 刘赛, 杨孟可, 李叶林, 等. 不同产地枸杞叶片多糖、总黄酮和总酚含量差异比较分析. 中国中药杂志, 2019, 44 (9): 1774- 1780. | |
| Liu S , Yang M K , Li Y L , et al. Variance analysis on polysaccharide, total flavonoids and total phenols of Lycium barbarum leaves from different production areas. Chinese Journal of Chinese Materia Medica, 2019, 44 (9): 1774- 1780. | |
| 马海军, 张晓荣, 陈虹羽. 不同产区枸杞品质比较研究. 西北农业学报, 2015, 24 (8): 153- 156, 90. | |
| Ma H J , Zhang X R , Chen H Y . Quality of Lycium barbarum L. in different regions. Acta Agricultural Boreali-Occidentalis Sinica, 2015, 24 (8): 153- 156. | |
| 马红亮, 朱建国, 谢祖彬, 等. 自由自然环境大气CO2浓度升高对稻田CH4排放的影响研究. 农业环境科学学报, 2010, 29 (6): 1217- 1224. | |
| Ma H L , Zhu J G , Xie Z B , et al. The effects of elevated atmospheric [CO2] on emission of CH4 from rice paddy field. Journal of Agro-Environment Science, 2010, 29 (6): 1217- 1224. | |
| 马亚平, 王乃功, 贾昊, 等. 改进式开顶气室模拟CO2浓度控制系统性能分析. 地球环境学报, 2019, 10 (3): 307- 315. | |
| Ma Y P , Wang N G , Jia H , et al. Evaluation of a modified open-top chamber simulation system on the study of elevated CO2 concentration effects. Journal of Earth Environment, 2019, 10 (3): 307- 315. | |
| 牛艳. 宁夏枸杞有效成分及其与生态因子关系的研究. 银川: 宁夏大学硕士学位论文, 2005. | |
| Niu Y . Studies on main contents of Lycium barbarum L. and relation on environment factors. Yinchuan: MS thesis of Ningxia University, 2005. | |
| 钱明媚. 碳稳定性同位素示踪免耕土壤微生物多样性研究. 南京: 南京农业大学硕士学位论文, 2015. | |
| Qian M M . Diversities of microbes in no-tillace soils revealed by stable isotope probing. Nanjing: MS thesis of Nanjing Agricultural University, 2015. | |
| 王超群, 焦如珍, 董玉红, 等. 不同林龄杉木人工林土壤微生物群落代谢功能差异. 林业科学, 2019, 55 (5): 36- 45. | |
| Wang C Q , Jiao R Z , Dong Y H , et al. Differences in metabolic functions of soil microbial communities of Chinese fir plantations of different ages. Scientia Silvae Sinicae, 2019, 55 (5): 36- 45. | |
| 王立. 松嫩草地优势禾草生理生态的适应特性及其对模拟气候变化的响应. 长春: 东北师范大学硕士学位论文, 2006. | |
| Wang L . Ecophysiology adaptation of dominant grasses and their response to simulated climatic changes in the Songnen grassland of China. Changchun: MS thesis of Northeast Normal University, 2006. | |
| 王苑. 气候变化背景下土壤微生物群落对干旱和自然环境大气CO2升高的响应. 上海: 东华大学硕士学位论文, 2014. | |
| Wang Y . Response of soil microbial communities to drought and elevated CO2 under the background of climate change. Shanghai: MS thesis of Donghua University, 2014. | |
| 徐常青, 刘赛, 徐荣, 等. 我国枸杞主产区生产现状调研及建议. 中国中药杂志, 2014, 39 (11): 1979- 1984. | |
| Xu C Q , Liu S , Xu R , et al. Investigation of production status in major wolfberry producing areas of China and some suggestions. China Journal of Chinese Materia Medica, 2014, 39 (11): 1979- 1984. | |
| 徐国强, 李杨, 史奕, 等.  开放式空气CO2浓度增高(FACE)对稻田土壤微生物的影响. 应用生态学报, 2002, 13 (10): 1358- 1359. doi: 10.3321/j.issn:1001-9332.2002.10.034 | |
| Xu G Q , Li Y , Shi Y , et al. Effects of free-air CO2 enrichment on soil microbes in paddy field. Chinese Journal of Applied Ecology, 2002, 13 (10): 1358- 1359. | |
| 杨美玲, 张霞, 王绍明, 等. 基于高通量测序的裕民红花根际土壤细菌群落特征分析. 微生物学通报, 2018, 45 (11): 2429- 2438. | |
| Yang M L , Zhang X , Wang S M , et al. High throughput sequencing analysis of bacterial communities in Yumin safflower. Microbiology China, 2018, 45 (11): 2429- 2438. | |
| 赵宗慈, 罗勇, 黄建斌. 回顾IPCC 30年(1988—2018年). 气候变化研究进展, 2018, 4 (5): 540- 546. | |
| Zhao Z C , Luo Y , Huang J B . Review of IPCC for 30 years(1988—2018). Progress in Climate Change Research, 2018, 4 (5): 540- 546. | |
| Carrillo Y ,  Dijkstra F ,  LeCain D , et al.  Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecology Letters, 2018, 21 (11): 1639- 1648. doi: 10.1111/ele.13140 | |
| Delgado-Baquerizo M ,  Eldridge D J ,  Ochoa V , et al.  Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 2017, 20 (10): 1295. doi: 10.1111/ele.12826 | |
| Dijkstra F A , Morgan J A , Fischer J C , et al. Elevated CO2 and warming effects on CH4 uptake in a semiarid grassland below optimum soil moisture. Journal of Geophysical Research-Biogeosciences, 2011, 116 (G1): 79- 89. | |
| Liu Y R , Delgado-Baquerizo M , Trivedi P , et al. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology & Biochemistry, 2017, 107, 208- 217. | |
| Ma Y P , Reddy V R , Devi M J , et al. De novo characterization of the Goji berry(Lycium barbarium L. ) fruit transcriptome and analysis of candidate genes involved in sugar metabolism under different CO2 concentrations. Tree Physiology, 2019, 39 (6): 1032- 1045. | |
| McFarland J W , Waldrop M P , Haw M . Extreme CO2 disturbance and the resilience of soil microbial communities. Soil Biology & Biochemistry, 2013, 65 (5): 274- 286. | |
| Mueller K E ,  LeCainD R ,  McCormack M L , et al.  Root responses to elevated CO2, warming and irrigation in a semi-arid grassland: Integrating biomass, length and life span in a 5-year field experiment. Journal of Ecology, 2018, 106 (6): 2176- 2189. doi: 10.1111/1365-2745.12993 | |
| Rier S T ,  Tuchman N C ,  Wetzel R G .  Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62 (1): 185- 194. doi: 10.1139/f04-148 | |
| Rillig M C ,  Allen M F ,  Klironomos J N , et al.  Plant species-specific changes in root-inhabiting fungi in a California annual grassland: responses to elevated CO2 and nutrients. Oecologia, 1998, 113 (2): 252- 259. doi: 10.1007/s004420050376 | |
| Ronn R , Gavito M , Larsen J , et al. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biology & Biochemistry, 2002, 34 (7): 923- 932. | |
| Terrer C ,  Vicca S ,  Stocker B D , et al.  Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytologist, 2018, 217 (2): 507- 522. doi: 10.1111/nph.14872 | |
| Wang Y H , Yu Z H , Li Y S , et al. Elevated CO2 alters the structure of the bacterial community assimilating plant-derived carbon in the rhizosphere of soya bean. European Journal of Soil Science, 2019, 70 (6): 1212- 1220. | |
| Williams M A ,  Rice C W ,  Owensby C E .  Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and Soil, 2000, 227 (1/2): 127- 137. doi: 10.1023/A:1026590001307 | |
| Zak D R , Pregitzer K S , King J S , et al. Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist, 2010, 147 (1): 201- 222. | |
| Zhang T Y , Wu Y H , Zhuang L L , et al. Screening heterotrophic microalgal strains by using the Biolog method for biofuel production from organic wastewater. Algal Research-Biomass Biofuels and Bioproducts, 2014, 6 (5): 175- 179. | 
| [1] | 哈蓉, 马亚平, 曹兵, 郭芳芸, 宋丽华. 模拟CO2浓度升高对宁夏枸杞营养生长与果实品质的影响[J]. 林业科学, 2019, 55(6): 28-36. | 
| [2] | 杨宁, 邹冬生, 杨满元, 付美云, 林仲桂, 赵林峰. 衡阳紫色土丘陵坡地不同植被恢复阶段土壤微生物群落多样性的变化[J]. 林业科学, 2016, 52(8): 146-156. | 
| [3] | 张于光, 宿秀江, 丛静, 陈展, 卢慧, 刘敏超, 李迪强. 神农架土壤微生物群落的海拔梯度变化[J]. 林业科学, 2014, 50(9): 161-166. | 
| [4] | 张晓文, 邢世岩, 吴岐奎, 刘晓静. 氮添加对银杏幼林土壤有机碳化学组成及土壤微生物群落的影响[J]. 林业科学, 2014, 50(6): 115-124. | 
| [5] | 南雄雄, 王锦秀, 常红宇, 王昊, 李永华, 沈效东. 枸杞新品种‘宁杞8号’[J]. 林业科学, 2014, 50(12): 170-170. | 
| [6] | 陶玉柱, 邸雪颖. 火对森林土壤微生物群落的干扰作用及其机制研究进展[J]. 林业科学, 2013, 49(11): 146-157. | 
| [7] | 曹兵;宋培建;康建宏;侯晶东;宋丽华. 大气CO2浓度倍增对宁夏枸杞生长的影响[J]. 林业科学, 2011, 47(7): 193-198. | 
| [8] | 郑阳霞;季静 王罡 杨婉身. 宁夏枸杞八氢番茄红素合成酶基因的克隆与序列分析[J]. 林业科学, 2006, 42(5): 138-141. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||