林业科学 ›› 2020, Vol. 56 ›› Issue (9): 87-96.doi: 10.11707/j.1001-7488.20200910
赵珮杉1,2,郭米山1,2,高广磊1,2,*,丁国栋1,2,张英1
收稿日期:
2019-05-21
出版日期:
2020-09-25
发布日期:
2020-10-15
通讯作者:
高广磊
基金资助:
Peishan Zhao1,2,Mishan Guo1,2,Guanglei Gao1,2,*,Guodong Ding1,2,Ying Zhang1
Received:
2019-05-21
Online:
2020-09-25
Published:
2020-10-15
Contact:
Guanglei Gao
摘要:
目的: 揭示科尔沁沙地樟子松根内真菌群落结构和功能群特征,为樟子松人工林经营管理提供依据。方法: 以科尔沁沙地不同林龄(26、33和43年)樟子松人工林为研究对象,利用Illumina MiSeq高通量测序和FUNGuild平台比较分析樟子松根内真菌群落结构和功能群,并探究土壤理化性质对根内真菌多样性和功能群结构的影响。结果: 1)科尔沁沙地樟子松根尖样品共获得832个OTUs,不同林龄沙地樟子松根内真菌多样性无显著差异。2)樟子松根内真菌隶属于5门16纲54目84科165属,且子囊菌门和担子菌门占绝对优势。樟子松根内真菌优势属包括鞘孢属、肉座菌属和Phialocephala。随着林龄的增加,优势属比例下降,常见属比例增加,稀有属比例则相对稳定。3)在樟子松根系中,病理营养型真菌比例随林龄增加而降低,共生营养型真菌比例则随林龄增加而急剧增加,主要表现为乳菇属、糙缘腺革菌属和须腹菌属等外生菌根真菌相对丰度增加。4)土壤理化性质和根内真菌多样性无显著相关性,不同真菌营养型中仅共生营养型真菌相对丰度与土壤含水量显著负相关。结论: 科尔沁沙地樟子松根内真菌物种组成丰富,功能群类型多样,不同林龄根内真菌功能群结构波动主要为病理营养型和共生营养型,土壤理化性质对根内真菌物种多样性的影响不显著。
中图分类号:
赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征[J]. 林业科学, 2020, 56(9): 87-96.
Peishan Zhao,Mishan Guo,Guanglei Gao,Guodong Ding,Ying Zhang. Characteristics of Community Structure and Functional Group of Fungi in Roots of Pinus sylvestris var. mongolica in the Horqin Sandy Land[J]. Scientia Silvae Sinicae, 2020, 56(9): 87-96.
表2
真菌营养型和功能群的划分"
营养型Trophic mode | 功能群Guild |
病理营养型 Pathotroph | 动物病原菌Animal pathogens |
植物病原菌Plant pathogens | |
其他病理真菌Other pathogenic fungi | |
腐生营养型 Saprotroph | 粪腐生真菌Dung saprotrophs |
植物腐生真菌Plant saprotrophs | |
土壤腐生真菌Soil saprotrophs | |
木质腐生真菌Wood saprotrophs | |
未定义腐生真菌Undefined saprotrophs | |
其他腐生真菌Other saprotrophic fungi | |
共生营养型 Symbiotroph | 丛枝菌根真菌Arbuscular mycorrhizal fungi |
外生菌根真菌Ectomycorrhizal fungi | |
内生真菌Endophytes | |
地衣共生真菌Lichenized fungi | |
其他Other fungi | — |
表4
沙地樟子松根内真菌多样性和营养型相对丰度与土壤理化性质的相关性①"
项目Item | Shannon | Simpson | Pielou | 病理营养型 Pathotroph | 腐生营养型 Saprotroph | 共生营养型 Symbiotroph |
SWC | -0.282 | -0.275 | -0.289 | -0.064 | -0.171 | -0.596* |
pH | -0.428 | -0.395 | -0.369 | 0.086 | -0.220 | -0.113 |
TSP | -0.316 | -0.278 | -0.281 | -0.034 | -0.146 | -0.406 |
SOC | 0.321 | 0.086 | 0.289 | -0.357 | 0.075 | 0.432 |
TN | 0.031 | -0.075 | 0.050 | -0.101 | -0.054 | 0.199 |
TP | 0.359 | 0.149 | 0.337 | -0.020 | 0.212 | 0.444 |
陈雪冬, 唐明, 张新璐, 等. 黄土高原刺槐纯林的土壤-菌根关系及随林龄的变化. 林业科学, 2017. 53 (12): 84- 92. | |
Chen X D , Tang M , Zhang X L , et al. Variation of the relationships between arbuscular mycorrhizal fungi and soil properties with different stand age of Robinia pseudoacacia plantations on the Loess Plateau. Scientia Silvae Sinicae, 2017. 53 (12): 84- 92. | |
陈智裕, 马静, 赖华燕, 等. 植物根系对根际微环境扰动机制研究进展. 生态学杂志, 2017. 36 (2): 524- 529. | |
Chen Z Y , Ma J , Lai H Y , et al. Research advances in the mechanisms of plant root systems disturbance in rhizosphere micro-environment. Chinese Journal of Ecology, 2017. 36 (2): 524- 529. | |
高尚坤, 肖文发, 曾立雄, 等. 马尾松人工林干扰对土壤微生物群落结构的短期影响. 林业科学, 2018. 54 (12): 92- 101. | |
Gao S K , Xiao W F , Zeng L X , et al. Short term effects of Pinus massoniana plantation disturbance on soil microbial community structure. Scientia Silvae Sinicae, 2018. 53 (10): 53- 62. | |
郭米山, 高广磊, 丁国栋, 等. 呼伦贝尔沙地樟子松外生菌根真菌多样性. 菌物学报, 2018. 37 (9): 1133- 1142. | |
Guo M S , Gao G L , Ding G D , et al. Diversity of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in Hulunbuir Sandy Land. Mycosystema, 2018. 37 (9): 1133- 1142. | |
李娇, 蒋先敏, 尹华军, 等. 不同林龄云杉人工林的根系分泌物与土壤微生物. 应用生态学报, 2014. 25 (2): 325- 332. | |
Li J , Jiang X M , Yin H J , et al. Root exudates and soil microbes in three Picea asperata plantations with different stand ages. Chinese Journal of Applied Ecology, 2014. 25 (2): 325- 332. | |
谯利军, 周思旋, 文庭池, 等. 贵州马比木内生真菌的多样性研究. 菌物学报, 2018. 37 (1): 43- 51. | |
Qiao L J , Zhou S X , Wen T C , et al. Diversity of endophytic fungi from Nothapodytes pittosporoides in Guizhou Province. Mycosystema, 2018. 37 (1): 43- 51. | |
任悦, 高广磊, 张英, 等. 沙地樟子松人工林叶片-枯落物-土壤有机碳含量特征. 北京林业大学学报, 2018. 40 (7): 36- 44. | |
Ren Y , Gao G L , Zhang Y , et al. Characteristics of organic carbon content of leaf-litter-soil system in Pinus sylvestris var. mongolica plantations. Journal of Beijing Forestry University, 2018. 40 (7): 26- 44. | |
王海英, 郭守玉, 黄满荣, 等. 子囊菌较担子菌具有更快的进化速率和更高的物种多样性. 中国科学:生命科学, 2010. 40 (8): 731- 730. | |
Wang H Y , Guo S Y , Huang M R , et al. Ascomycota has faster evolutionary rate and higher species diversity than Basidiomycota (Fungi). Science China:Life Sciences, 2010. 40 (8): 731- 730. | |
许美玲, 朱教君, 孙军德, 等. 树木外生菌根菌与环境因子关系研究进展. 生态学杂志, 2004. 23 (5): 212- 217. | |
Xu M L , Zhu J J , Sun J D , et al. A review on the relationships between forest ectomycorrhizal fungi and environmental factors. Chinese Journal of Ecology, 2004. 23 (5): 212- 217. | |
朱教君, 康宏樟, 许美玲, 等. 外生菌根真菌对科尔沁沙地樟子松人工林衰退的影响. 应用生态学报, 2007. 18 (12): 2693- 2698. | |
Zhu J J , Kang H Z , Xu M L , et al. Effects of ectomycorrhizal fungi on alleviating the decline of Pinus sylvestris var. mongolica plantations on Keerqin sandy land. Chinese Journal of Applied Ecology, 2007. 18 (12): 2693- 2698. | |
Arnold A E , Lutzoni F . Diversity and host range of foliar fungal endophytes:Are tropical leaves biodiversity hotspots?. Ecology, 2007. 88 (3): 541- 549.
doi: 10.1890/05-1459 |
|
Baldrian P . Forest microbiome:Diversity, complexity and dynamics. FEMS Microbiology Reviews, 2017. 41 (2): 109- 130. | |
Barnes C J , Carla M , Frøslev T G , et al. Unexpectedly high beta-diversity of root-associated fungal communities in the Bolivian Andes. Frontiers in Microbiology, 2016b. 7, 1377. | |
Barnes C J , van der Gast C J , Burns C A , et al. Temporally variable geographical distance effects contribute to the assembly of root-associated fungal communities. Frontiers in Microbiology, 2016a. 7, 195. | |
Barnes C J , van der Gast C J , Mcnamara N P , et al. Extreme rainfall affects assembly of the root-associated fungal community. New Phytologist, 2018. 220 (4): 1172- 1184.
doi: 10.1111/nph.14990 |
|
Beck S , Powell J R , Drigo B , et al. The role of stochasticity differs in the assembly of soil-and root-associated fungal communities. Soil Biology & Biochemistry, 2015. 80, 18- 25. | |
Bonito G , Hameed K , Ventura R , et al. Isolating a functionally relevant guild of fungi from the root microbiome of Populus. Fungal Ecology, 2016. 22, 35- 42.
doi: 10.1016/j.funeco.2016.04.007 |
|
Botnen S , Vik U , Carlsen T , et al. Low host specificity of root-associated fungi at an Arctic site. Molecular Ecology, 2014. 23 (4): 975- 985.
doi: 10.1111/mec.12646 |
|
Chu H , Wang C , Wang H , et al. Pine wilt disease alters soil properties and root-associated fungal communities in Pinus tabulaeformis forest. Plant and Soil, 2016. 404 (1/2): 237- 249. | |
Davey M , Blaalid R , Vik U , et al. Primary succession of Bistorta vivipara (L.) Delabre (Polygonaceae) root associated fungi mirrors plant succession in two glacial chronosequences. Environmental Microbiology, 2015. 17 (8): 2777- 2790.
doi: 10.1111/1462-2920.12770 |
|
David A S , Seabloom E W , May G . Plant host species and geographic distance affect the structure of aboveground fungal symbiont communities, and environmental filtering affects belowground communities in a coastal dune ecosystem. Microbial Ecology, 2016. 71 (4): 912- 926.
doi: 10.1007/s00248-015-0712-6 |
|
Dickie I A , Koide R T , Fayish A C . Vesicular-arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytologist, 2001. 151 (1): 257- 264.
doi: 10.1046/j.1469-8137.2001.00148.x |
|
Entwistle E M , Zak D R , Edwards I P . Long-term experimental nitrogen deposition alters the composition of the active fungal community in the forest floor. Soil Science Society of America Journal, 2013. 77 (5): 1648- 1658.
doi: 10.2136/sssaj2013.05.0179 |
|
Frewa A , Powell J R , Glauserc G , et al. Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations. Soil Biology & Biochemistry, 2018. 126, 123- 132. | |
Gao C , Zhang Y , Shi N N , et al. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist, 2015. 205 (2): 771- 785.
doi: 10.1111/nph.13068 |
|
Gao G L , Ding G D , Zhao Y Y , et al. Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskii shelterbelts in Ningxia, NW China. Ecological Indicators, 2014. 43, 236- 243.
doi: 10.1016/j.ecolind.2014.03.001 |
|
Grau O , Geml J , Pérez-Haase A , et al. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Molecular Ecology, 2017. 26 (18): 4798- 4180.
doi: 10.1111/mec.14227 |
|
Grover M , Ali S Z , Sandhya V , et al. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology & Biotechnology, 2011. 27 (5): 1231- 1240. | |
Jaklitsch W M . European species of Hypocrea Part I. The green-spored species. Studies in Mycology, 2009. 63, 1- 91. | |
Jumpponen A , Jones K L . Tallgrass prairie soil fungal communities are resilient to climate change. Fungal Ecology, 2014. 10, 44- 57.
doi: 10.1016/j.funeco.2013.11.003 |
|
Kennedy P G , Hill L T . A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages. Fungal Ecology, 2010. 3 (3): 195- 204.
doi: 10.1016/j.funeco.2009.08.005 |
|
Kernaghan G , Patriquin G . Host associations between fungal root endophytes and boreal trees. Microbial Ecology, 2011. 62 (2): 460- 473.
doi: 10.1007/s00248-011-9851-6 |
|
Kilpelainen J , Vestberg M , Repo T , et al. Arbuscular and ectomycorrhizal root colonisation and plant nutrition in soils exposed to freezing temperatures. Soil Biology & Biochemistry, 2016. 99, 85- 93. | |
Kyaschenko J , Clemmensen K , Hageno A , et al. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. The ISME Journal, 2017. 11 (4): 863- 874.
doi: 10.1038/ismej.2016.184 |
|
Li S , Shakoor A , Wubet T , et al. Fine-scale variations of fungal community in a heterogeneous grassland in Inner Mongolia:Effects of the plant community and edaphic parameters. Soil Biology & Biochemistry, 2018. 122, 104- 110. | |
Liu Y J , Mao L , Li J Y , et al. Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant and Soil, 2015. 386 (1/2): 341- 355. | |
Lladó S , López-Mondéjar R , Baldrian P . Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 2018. 102 (10): 4331- 4338.
doi: 10.1007/s00253-018-8950-4 |
|
Mandyam K , Jumpponen A . Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 2005. 53 (1): 173- 189. | |
Martin F M , Uroz S , Barker D G . Ancestral alliances:Plant mutualistic symbioses with fungi and bacteria. Science, 2017. 356, eaad4501.
doi: 10.1126/science.aad4501 |
|
Merges D , Miklós B , Schmitt I , et al. Spatial patterns of pathogenic and mutualistic fungi across the elevational range of a host plant. Journal of Ecology, 2018. 106, 1545- 1557.
doi: 10.1111/1365-2745.12942 |
|
Millberg H , Boberg J , Stenlid J . Changes in fungal community of Scots pine (Pinus sylvestris) needles along a latitudinal gradient in Sweden. Fungal Ecology, 2015. 17, 126- 139.
doi: 10.1016/j.funeco.2015.05.012 |
|
Moore J C , Berlow E L , Coleman D C , et al. Detritus, trophic dynamics and biodiversity. Ecology Letters, 2004. 7, 584- 600.
doi: 10.1111/j.1461-0248.2004.00606.x |
|
Nagy N E , Fossdal C G . Host responses in Norway spruce roots induced to the pathogen Ceratocystis polonica are evaded or suppressed by the ectomycorrhizal fungus Laccaria bicolor. Plant Biology, 2013. 15 (1): 99- 110. | |
Nguyen N H , Song Z W , Bates S T , et al. FUNguild:An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2016. 20, 241- 248.
doi: 10.1016/j.funeco.2015.06.006 |
|
Paulin-Mahady A E , Harrington T C , Mcnew D . Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia, 2002. 94 (1): 62- 72.
doi: 10.1080/15572536.2003.11833249 |
|
Philippot L , Raaijmakers J M , Lemanceau P , et al. Going back to the roots:the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013. 11, 789- 799.
doi: 10.1038/nrmicro3109 |
|
Pickles B J , Gorzelak M A. , Green D S. , et al. Host and habitat filtering in seedling root-associated fungal communities:taxonomic and functional diversity are altered in 'novel' soils. Mycorrhiza, 2015. 25 (7): 517- 531.
doi: 10.1007/s00572-015-0630-y |
|
Puglisi E , Pascazio S , Suciu N , et al. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. Journal of Geochemical Exploration, 2013. 129, 82- 94.
doi: 10.1016/j.gexplo.2012.10.006 |
|
Rousk J , Bååth E , Brookes P C , et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010. 4 (10): 1340- 1351.
doi: 10.1038/ismej.2010.58 |
|
Sangüesa-Barreda G , Camarero J J , Oliva J , et al. Past logging, drought and pathogens interact and contribute to forest dieback. Agricultural and Forest Meteorology, 2015. 208, 85- 94.
doi: 10.1016/j.agrformet.2015.04.011 |
|
Spake R , van der Linde S , Newton A C , et al. Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests. Biological Conservation, 2016. 194, 71- 79.
doi: 10.1016/j.biocon.2015.12.003 |
|
Surono , Narisawa K . The inhibitory role of dark septate endophytic fungus, Phialocephala fortinii, against, Fusarium, disease on the, Asparagus officinalis, growth in organic source conditions. Biological Control, 2018. 121, 159- 167.
doi: 10.1016/j.biocontrol.2018.02.017 |
|
Tellenbach C , Sumarah M W , Christoph R. Grünig , et al. Inhibition of Phytophthora species by secondary metabolites produced by the dark septate endophyte Phialocephala europaea. Fungal Ecology, 2013. 6 (1): 12- 18. | |
Toju H , Sato H . Root-associated fungi shared between arbuscular mycorrhizal and ectomycorrhizal conifers in a temperate forest. Frontiers in Microbiology, 2018a. 9, 433.
doi: 10.3389/fmicb.2018.00433 |
|
Toju H , Sato H , Yamamoto S , et al. How are plant and fungal communities linked to each other in belowground ecosystems? A massively parallel pyrosequencing analysis of the association specificity of root-associated fungi and their host plants. Ecology and Evolution, 2013a. 3 (9): 3112- 3124.
doi: 10.1002/ece3.706 |
|
Toju H , Tanabe A S , Sato H . Network hubs in root-associated fungal metacommunities. Microbiome, 2018b. 6, 116.
doi: 10.1186/s40168-018-0497-1 |
|
Toju H , Yamamoto S , Sato H , et al. Community composition of root-associated fungi in a Quercus-dominated temperate forest:"codominance" of mycorrhizal and root-endophytic fungi. Ecology and Evolution, 2013b. 3 (5): 1281- 1293.
doi: 10.1002/ece3.546 |
|
Toljander J F , Eberhardt U , Toljander Y K , et al. Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytologist, 2006. 170 (4): 873- 884.
doi: 10.1111/j.1469-8137.2006.01718.x |
|
Tulik M , Yaman B , Köse N . Comparative tree-ring anatomy of Fraxinus excelsior with Chalara dieback. Journal of Forestry Research, 2018. 29 (6): 1741- 1749.
doi: 10.1007/s11676-017-0586-1 |
|
Twieg B D , Durall D M , Simard S W . Ectomycorrhizal fungal succession in mixed temperate forests. New Phytologist, 2007. 176 (2): 437- 447.
doi: 10.1111/j.1469-8137.2007.02173.x |
|
Wallander H , Johansson U , Sterkenburg E , et al. Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytologist, 2010. 187 (4): 1124- 1134.
doi: 10.1111/j.1469-8137.2010.03324.x |
|
Wu Y T , Wubet T , Trogisch S , et al. Forest age and plant species composition determine the soil fungal community composition in a Chinese subtropical forest. PLoS One, 2013. 8 (6): e66829.
doi: 10.1371/journal.pone.0066829 |
|
Zheng Y , Hu H W , Guo L D , et al. Dryland forest management alters fungal community composition and decouples assembly of root-and soil-associated fungal communities. Soil Biology & Biochemistry, 2017. 109, 14- 22. |
[1] | 王安可,毕毓芳,温星,王玉魁,蔡函江. 4种芳香植物精油对竹林病原真菌的抗菌性[J]. 林业科学, 2020, 56(6): 59-67. |
[2] | VuongThi Minh Dien,曾健勇,满秀玲. 樟子松天然林土壤碳氮含量与水解酶活性坡位差异及月动态[J]. 林业科学, 2020, 56(2): 40-47. |
[3] | 党宏忠, 冯金超, 韩辉. 沙地樟子松边材液流速率的方位差异特征[J]. 林业科学, 2020, 56(1): 29-37. |
[4] | 杨保国, 贾宏炎, 郝建, 李运兴, 庞圣江, 刘士玲, 张培, 牛长海, 蔡道雄. 不同林龄柚木人工林心边材生长变异特征[J]. 林业科学, 2020, 56(1): 65-73. |
[5] | 高慧淋, 董利虎, 李凤日. 基于修正Kozak方程的人工樟子松树冠轮廓预估模型[J]. 林业科学, 2019, 55(8): 84-94. |
[6] | 杜一尘, 李明泽, 范文义, 王斌. 基于地理加权回归模型与林火遥感数据估算森林年龄[J]. 林业科学, 2019, 55(6): 184-194. |
[7] | 祁金玉, 宋瑞清. 褐环乳牛肝菌与绿木霉复合接种对辽西北地区樟子松根系的影响[J]. 林业科学, 2018, 54(5): 62-69. |
[8] | 马岩岩, 姜立春. 异速生长模型的误差结构和误差函数[J]. 林业科学, 2018, 54(2): 90-97. |
[9] | 王立祥, 刘晓博, 任利利, 石娟, 骆有庆. 松树蜂入侵的混交林中针叶树种内生真菌多样性[J]. 林业科学, 2017, 53(9): 81-89. |
[10] | 李彦华, 张文辉, 申家朋, 周建云, 郭有燕. 甘肃黄土丘陵区侧柏人工幼林的碳密度及分配特征[J]. 林业科学, 2015, 51(6): 1-8. |
[11] | 郭洪武, 刘毅, 付展, 胡极航, 张帆. 乙酰化处理对樟子松木材耐光性和热稳定性的影响[J]. 林业科学, 2015, 51(6): 135-140. |
[12] | 李倩, 吴小芹, 叶建仁. 一种马尾松菌根辅助细菌——短芽孢杆菌的筛选及鉴定[J]. 林业科学, 2015, 51(5): 159-164. |
[13] | 柴宇博, 孙柏玲, 刘君良, 秦特夫, 储富祥. 近红外光谱快速预测乙酰化木材的增重率[J]. 林业科学, 2014, 50(9): 124-128. |
[14] | 王琳, 陈展, 尚鹤. 外生菌根真菌在酸雨胁迫下对马尾松土壤微生物代谢功能的影响[J]. 林业科学, 2014, 50(7): 99-104. |
[15] | 张晓曦, 刘增文, 邴塬皓, 朱博超, 杜良贞, 祝振华. 樟子松与其他10种凋落叶混合分解的养分释放特征[J]. 林业科学, 2014, 50(7): 149-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||