陈承利. 2006. 重金属Cd、Pb、Hg污染对土壤微生物及其活性影响研究. 杭州:浙江大学硕士学位论文.
(Chen C L. 2006. Effects of cadmium,lead and mercury pollution on soil microorganisms and their activities. Hangzhou: MS thesis of Zhejiang University. [in Chinese] )
陈展,尚鹤. 2014. 接种外生菌根菌对模拟酸雨胁迫下马尾松营养元素的影响. 林业科学,50(1): 156-163.
(Chen Z, Shang H. 2014. Effects of ectomycorrhizal fungi on nutrient elements of Pinus massoniana seedlings under simulated acid rain. Scientia Silvae Sinicae, 50(1): 156-163. [in Chinese] )
陈展,王琳,尚鹤. 2013.接种彩色豆马勃对模拟酸沉降下马尾松幼苗生物量的影响. 生态学报, 33(20): 6526-6533.
(Chen Z, Wang L, Shang H. 2013. Effects of ectomycorrhizal fungi (tinctorius (Pers.) Coker & Couch)on the biomass of masson pine (Pinus massoniana) seedlings under simulated acid rain. Acta Ecologica Sinica, 33(20): 6526-6533. [in Chinese] )
陈展,王效科,段晓男,等. 2007.臭氧浓度升高对盆栽小麦根系和土壤微生物功能的影响. 生态学报, 27(5): 1803-1808.
(Chen Z, Wang X K, Duan X N, et al. 2007. Ozone effects on wheat root and soil microbial biomass and diversity. Acta Ecologica Sinica, 27(5): 1803-1808. [in Chinese] )
付晓萍, 田大伦.2006. 酸雨对植物的影响研究进展. 西北林学院学报, 21(4): 23-27.
(Fu X P, Tian D L. 2006. Research progress of the effect of acid rain on plant. Journal of Northwest Forestry University, 21(4): 23-27. [in Chinese] )
辜夕容,黄建国,梁国仕. 2005. 接种双色蜡蘑对马尾松幼苗生长、养分和抗铝性的影响. 林业科学,41(4): 199-203.
(Gu X R, Huang J G, Liang G S. 2005. Influences of laccaria bicolor on the growth, nutrient uptake and aluminum resistance of Pinus massoniana seedlings. Scientia Silvae Sinicae, 41(4): 199-203. [in Chinese] )
林慧萍.2005. 酸雨对陆生植物的影响机理. 福建林业科技,32(1): 60-64.
(Lin H P. 2005. Influencing mechanism of the acid rain on the terrestrial plant. Journal of Fujian Forestry Science and Technology, 32(1): 60-64. [in Chinese] )
林先贵,陈瑞蕊,胡君利. 2010. 土壤微生物资源管理、应用技术与学科展望. 生态学报,30(24): 7029-7037.
(Lin X G, Chen R R, Hu J L. 2010. The management and application of soil microbial resources and the perspectives of soil microbiology. Acta Ecologica Sinica, 30(24): 7029-7037. [in Chinese] )
林先贵,胡君利.2008. 土壤微生物多样性的科学内涵及其生态服务功能. 土壤学报,45(5): 892-900.
(Lin X G, Hu J L. 2008. Scientific connotation and ecological service function of soil microbial diversity. Acta Pedologica Sinica, 45(5): 892-900. [in Chinese] )
凌大炯,章家恩,欧阳颖. 2007. 酸雨对土壤生态系统影响的研究进展. 土壤,39(4): 514-521.
(Ling D J, Zhang J E, Ouyang Y. 2007. Advancements in research on impact of acid rain on soil ecosystem: a review. Soils, 39(4): 514-521. [in Chinese] )
谈建康,孔繁翔. 2005. 酸沉降和铝对马尾松菌根共生体碳代谢影响. 林业科学,41(6): 23-27.
(Tan J K, Kong F X. 2005. Effects of acid precipitation and Al on Carbon metabolism in mycorrhizal symbionts of Pinus massoniana. Scientia Silvae Sinicae, 41(6): 23-27. [in Chinese] )
王玲,黄世文,刘连盟,等. 2009. 三种研究农田土壤微生物多样性方法的比较. 科技通报,25(5): 588-592.
(Wang L, Huang S W, Liu L M, et al. 2009. Comparation of three methods for studying microbial diversity of farmland soil. Bulletin of Science and Technology, 25(5): 588-592. [in Chinese] )
杨宗慧. 2002. 我国酸雨状况和对策.云南环境科学, 21(1): 25-26.
(Yang Z H. 2002. Acid rain in china and its countermeasures. Yunnan Environmental Science, 21(1): 25-26. [in Chinese] )
张德明,陈章和. 1998. 白云山土壤微生物的季节变化及其对环境污染的反应. 生态科学,17(1): 40-45.
(Zhang D M, Chen Z H. 1998. Seasonal variation of soil microbes and its reaction to environment pollution. Ecologic Science, 17(1): 40-45. [in Chinese] )
张海涵. 2008. 林木菌根真菌与土壤微生物相互关系的研究. 杨凌:西北农林科技大学硕士学位论文.
(Zhang H H. 2008. The relationship between mycorrhizal fungi and soil microbial under tree species. Yangling: MS thesis of Northwest A&F University. [in Chinese] )
张慰,陈展,邓仕槐,等. 2012. 外生菌根缓解酸雨胁迫的机理研究进展. 生态学杂志, 31(1): 200-206.
(Zhang W, Chen Z, Deng S H, et al. 2012. Ectomycorrhizae-induced mitigation mechanisms against the damages of acid rain on plants:A review. Chinese Journal of Ecology, 31(1): 200-206. [in Chinese] )
Agarwal P, Sah P. 2009. Ecological importance of ectomycorrhizae in world forest ecosystems. Nature and Science, 7 (2): 107-116.
Baldrian P, Kolaîík M, Štursová M, et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal, 6(2): 248-258.
Benizri E, Amiaud B. 2005. Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biology & Biochemistry, 37(11): 2055-2064.
Bossio D D,Scow K M. 1995. Impact of carbon and flooding on the metabolic diversity of mi crobial communities in soils.Appllied Environmental Microbiology, 61: 4043-4050.
Bossio D A, Girvan M S, Verchot L, et al. 2005. Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microbial Ecology, 49 (1): 50-62.
Chen Z, Wang X K, Feng Z Z, et al. 2009. Impact of elevated O3 on soil microbial community function under wheat crop. Water, Air and Soil Pollution, 198 (1-4): 189-198.
Chen Z, Wang X K, Yao F F, et al. 2010. Elevated ozone changed soil microbial community in a rice paddy. Soil Science and Society of American Journal, 74(3): 829-837.
Copy C C, Dianarn R N,Steven K S, et al. 2001.Increases in soft respiralion following labile carbon additions linked Biogeochemistry, 82:229-240.
Garland J L, Mills A L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source-utilization. App1lied Environmental Microbiology, 57 (8): 2351-2359.
Haack S K, Garchow H M, Klug J, et al. 1995.Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Applied and Environmental Microbiology, 61(4): 1458-1468.
Pennanen T, Fritze H, Vanhala P, et al. 1998a. Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Applied and Environmental microbiology, 64 (6): 2173-2180.
Pennanen T, Perkimki J, Kiikkil O, et al. 1998b. Prolonged, simulated acid rain and heavy metal deposition: Separated and combined effects on forest soil microbial community structure. FEMS Microbiology Ecology, 27 (3): 291-300.
Petra M, Karen B. 2003. Changes in bacterial community structure induced by mycorrhizalcolonisation in split-root maize. Plant and Soil, 251 (2): 279-289.
Rogers B F, Tate III R L. 2001. Temporal analysis of the soil microbial community along a topo sequence in Pineland soils. Soil Biology and Biochemistry, 33 (10): 1389-1401.
Van Hees P A W, Jones D L, Jentschke G, et al. 2005.Organic acid concentrations in soil solution: Effects of young coniferous trees and ectomycorrhizal fungi. Soil Biology and Biochemistry, 37(4): 7712-7761.
Wang G H, Jin J, Chen X L, et al. 2007. Biomass and catabolic diversity of microbial communities with long-term restoration, bare fallow and cropping history in Chinese Mollisols. Plant Soil Environemnt, 53 (4): 177-185.
Xue D, Yao H Y, Ge D Y, et al. 2008. Soil microbial community structure in diverse land use systems: A comparative study using Biology, DGGE, and PLFA analyses. Pedosphere, 18 (5): 653-663.
Zabinski C A, Gannon J E. 1997. Effects of recreational impacts on soil microbial communities. Environmental Manage, 21(2): 233-238.
Zak J C,Willig M R,Moorhead D L,et al.1994. Functional diversity of microbial communities: A quantitative approach. Soil Biology & Biochemistry, 26 (9): 1101-1108. |