范瑞英, 杨小燕, 王恩姮, 等. 2013. 黑土区不同林龄落叶松人工林土壤微生物群落功能多样性的对比研究. 北京林业大学学报, 35(2):63-68. (Fan R Y, Yang X Y, Wang E H, et al. 2013. Comparative studies on functional diversity of soil microbial community of larch plantations with different ages in black soil region, northeastern China. Journal of Beijing Forestry University, 35(2):63-68.[in Chinese]) 贾亚运, 周丽丽, 吴鹏飞, 等. 2016. 不同发育阶段杉木人工林林下植被的多样性. 森林与环境学报, 36(1):36-41. (Jia Y Y, Zhou L L, Wu P F, et al. 2016. Characterization of understory community of Cunninghamia lanceolata plantations at different developmental stages. Journal of Forest and Environment, 36(1):36-41.[in Chinese]) 焦如珍, 杨承栋, 孙启武, 等. 2005. 杉木人工林不同发育阶段土壤微生物数量及其生物量的变化. 林业科学, 41(6):163-165. (Jiao R Z, Yang C D, Sun Q W, et al. 2005. Changes in soil microbial amount and biomass during the development of Chinese fir plantation. Scientia Silvae Sinicae, 41(6):163-165.[in Chinese]) 焦如珍, 杨承栋, 屠星南, 等. 1997. 杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化. 林业科学研究, 10(4):373-379. (Jiao R Z, Yang C D, Tu X N, et al. 1997. The change of undergrowth, soil microorganism, enzyme activity and nutrient in different developing stage of the Chinese Fir plantation. Forest Research, 10(4):373-379.[in Chinese]) 李世朋, 蔡祖聪, 杨浩. 2008. 不同植被下红壤性质对细菌碳源利用的影响. 应用与环境生物学报, 14(6):793-797. (Li S P, Cai Z C, Yang H. 2008. Effect of red soil properties under different vegetation types on bacterial carbon source utilization. Chinese Journal of Applied and Environmental Biology, 14(6):793-797.[in Chinese]) 林开敏, 俞新妥, 黄宝龙, 等. 2001. 杉木人工林林下植物物种多样性的动态特征. 应用与环境生物学报, 7(1):13-19. (Lin K M, Yu X T, Huang B L, et al. 2001. Dynamic characteristics of undergrowth plant diversity in Chinese fir plantations. Chinese Journal of Applied and Environmental Biology, 7(1):13-19.[in Chinese]) 刘丽, 段争虎, 汪思龙, 等. 2009. 不同发育阶段杉木人工林对土壤微生物群落结构的影响. 生态学杂志, 28(12):2417-2423. (Liu L, Duan Z H, Wang S L, et al. 2009. Effects of Cunninghamia lanceolata plantations at different developmental stages on soil microbial community structure. Chinese Journal of Ecology, 28(12):2417-2423.[in Chinese]) 陆爽, 张霞, 谭勇,等. 2011. 栽培红花生长期土壤微生物与土壤理化因子动态. 草业科学, 28(12):2084-2091. (Lu S, Zhang X, Tan Y, et al. 2011. Dynamics between soil microorganism and soil character actors during Carthamus tinctorius growth periods. Pratacultal Science, 28(12):2084-2091.[in Chinese]) 鲁顺保, 张艳杰, 陈成榕, 等. 2013. 基于BIOLOG 指纹解析三种不同森林类型土壤细菌群落功能差异. 土壤学报, 50(3):618-623. (Lu S B, Zhang Y J, Chen C R, et al. 2013. Analysis of functional differences between soil bacterial communities in three different types of forest soils based on biology fingerprint. Acta Pedologica Sinica, 50(3):618-623.[in Chinese]) 申卫收, 林先贵, 张华勇, 等. 2008. 不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性. 生态学报, 28(6):2685-2686. (Shen W S, Lin X G, Zhang H Y, et al. 2008. Microbial activity and functional diversity in soils used for the commercial production of cucumbers and tomatoes in polytunnel greenhouse, under different fertilization. Acta Ecologica Sinica, 28(6):2685-2686.[in Chinese]) 盛炜彤, 杨承栋, 范少辉. 2003. 杉木人工林的土壤性质变化.林业科学研究, 16(4):377-385. (Sheng W T, Yang C D, Fan S H. 2003. Variation of soil properties of Chinese fir plantation. Forest Research, 16(4):377-385.[in Chinese]) 王丹, 戴伟, 王兵, 等. 2010. 杉木人工林不同发育阶段土壤性质变化的研究. 北京林业大学学报, 32(3):59-63. (Wang D, Dai W, Wang B, et al. 2010. Changes of soil properties at different developmental stages of Chinese fir plantations. Journal of Beijing Forestry University,32(3):59-63.[in Chinese]) 王珍, 曹光球, 张月全, 等. 2017. 凋落物配比对杉木土壤微生物碳代谢多样性的影响. 福建林学院学报, 37(2):148-154. (Wang Z, Cao G Q, Zhang Y Q, et al. 2017. Responses of carbon metabolism diversity of topsoil microbial to the litterfall addition in Cunninghamia laneolata plantation. Journal of Forest and Environment, 37(2):148-154.[in Chinese]) 魏志超, 黄娟, 刘雨晖, 等. 2017. 不同发育阶段杉木人工林土壤细菌类群特征. 西南林业大学学报, 37(5):122-129. (Wei Z C, Huang J, Liu Y H, et al. 2017. Community characteristics of soil bacteria of Cunninghamia laneolata plantations at different development stages. Journal of Southwest Forestry University, 37(5):122-129.[in Chinese]) 吴永铃, 王兵, 赵超, 等. 2011. 杉木人工林不同发育阶段土壤肥力综合评价研究. 西北农林科技大学学报, 39(1):69-75. (Wu Y L, Wang B, Zhao C, et al. 2011. Comprehensive evaluation of soil fertility in different developing stages of Chinese fir plantations. Journal of Northwest A&F University, 39(1):69-75.[in Chinese]) 徐秋芳, 钱信标. 1998. 杉木林地土壤微生物数量的分析研究. 浙江林业科技, 18(1):33-36. (Xu Q F, Qian X B. 1998. Study on soil microorganism quantity in Cunninghamia lanceolata forest land. Journal of Zhejiang Forestry Science and Technology, 18(1):33-36.[in Chinese]) 杨永华, 姚健, 华晓梅. 2000. 农药污染对土壤微生物群落功能多样性的影响. 微生物学杂志, 20(2):23-25. (Yang Y H, Yao J, Hua X M. 2000. Effect of pesticide pollution against functional microbial diversity in soil. Journal of Microbiology, 20(2):23-25.[in Chinese]) 中国科学院南京土壤研究所. 1978. 土壤理化分析. 上海:上海科学技术出版社. (Institute of Soil Science, Chinese Academy of Sciences.1978. Soil physical and chemical analysis. Shanghai:Shanghai Scientific & Technical Publishers. Bell T, Newman J A, Silverman B W, et al. 2005. The contribution of species richness and composition to bacterial services. Nature, 436 (7054):1157-1160. Chen F L, Zheng H, Zhang K, et al. 2013. Changes in soil microbial community structure and metabolic activity following conversion from native Pinus massoniana plantations to exotic Eucalyptus plantations. Forest Ecology & Management, 291:65-72. Choi K H, Dobbs F C. 1993. Comparison of two kinds of Biolog micro-plates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Microbioal Meth, 36(3):203-213. Classen A T, Boyle S I, Haskins K E, et al. 2003. Community-level physiological profiles of bacteria and fungi:plate type and incubation temperature influences on contrasting soils. FEMS Microbiology Ecology, 44(3):319-328. Degens B P, Schipper L A, Sparling G P, et al. 2000. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 32(2):189-196. Fierer N, Jackson R B. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3):626-631. Garland J L, Mills A L, Young J S. 2001. Relative effectiveness of kinetic analysis vs single point readings for classifying environmental samples based on community-level physiological profiles (CLPP). Soil Biology and Biochemistry, 33(7/8):1059-1066. Grove J A, Kautola H, Javadpour S, et al. 2004. Assessmentof changes in the microorganism community in a biofilter. Biochemical Engineering Journal, 18(2):111-114. Hadwin A M, Del Rio L F, Pinto L J, et al. 2006. Microbial communities in wetlands of the Athabasca oil sands:genetic and metabolic characterization. Fems Microbiology Ecology, 55(1):68-78. Laverman A M, Braster M, Röling W F M, et al. 2005. Bacterial community structure and metabolic profiles in a forest soil exhibiting spatially variable net nitrate production. Soil Biology and Biochemistry, 37(9):1581-1588. Ling N, Deng K Y, Song Y, et al. 2014. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiological Research, 169(7/8):570-578. Liu B R, Jia G M, Chen J, et al. 2006. A review of methods for studying microbial diversity in soils. Pedosphere, 16(1):18-24. Marschner P, Neumann G, Kania A, et al. 2002. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant and Soil, 246(2):167-174. O'Donnell A G, Seasman M, Macrae A, et al. 2001. Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant and Soil, 232(1/2):135-145. Oren A, Steinberger Y. 2008. Catabolic profles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biology and Biochemistry, 40(10):2578-2587. Pielou E C. 1975. Mathematical ecology. Journal of Animal Ecology, 47(3):1024. Preston-Mafham J, Boddy L, Randerson P F. 2002. Analysis of microbial community functional diversity using sole-carbon-source utilization profilies a critique. FEMS Microbiology Ecology, 42(1):1-14. Qu Y D, Su Z Y, Peng G X, et al. 2009. Soil microbial functional diversity in a montane evergreen broadleaved forest of Chebaling following the huge ice storm in south China. Acta Ecologica Sinica, 29(11):6156-6164. Smalla K, Wachtendorf U, Heuer H, et al. 1998. Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Applied and Environmental Microbiology, 64(4):1220-1225. Springob G, Kirchmann H. 2003. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology & Biochemistry, 35(4):629-632. Tirol-Padre A, Ladha J K. 2004. Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Science Society of America Journal, 68(3):969-978. Ward D M, Weller R, Bateson M M. 1990.16S rRNA sequences reveal numerous uncultured microorganisms in a nature community. Nature, 345(6270):63-65. White C, Tardif J C, Adkins A, et al. 2005. Functional diversity of microbial communities in the mixed boreal plain forest of central Canada. Soil Biology and Biochemistry, 37:1359-1372. Zak J C, Willig M R, Moorhead D L, et al. 1994. Functional diversity of microbial communities:a quantitative approach. Soil Biology and Biochemistry, 26(9):1101-1108. |