何 容,汪家社,施 政,等. 2009. 武夷山植被带土壤微生物量沿海拔梯度的变化. 生态学报,29 (9):5138-5144. (He R, Wang J S, Shi Z, et al. 2009. Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi Mountains, China. Acta Ecologica Sinica, 29(9):5138-5144.[in Chinese]) 胡 嵩,张 颖,史荣久, 等. 2013. 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化.应用生态学报, 24 (2):366-372. (Hu S, Zhang Y, Shi R J, et al. 2013. Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinus koraiensis forests in Changbai Mountains of Northeast China. Chinese Journal of Applied Ecology, 24 (2):366-372.[in Chinese]) 关德新, 吴家兵, 于贵瑞, 等. 2004. 气象条件对长白山阔叶红松林CO2通量的影响. 中国科学.D辑.地球科学,34(增Ⅱ):103-108. (Guan D X, Wu J B, Yu G R, et al. 2004. The influence for CO2 flux at Changbai mountain broad-leaved Korean pine by meteorological conditions.Science in China Ser. D.Earth Sciences,34(Suppl Ⅱ):103-108.[in Chinese]) 郭良栋,田春杰. 2013. 菌根真菌的碳氮循环功能研究进展. 微生物学通报, 40 (1):158-171. (Guo L D, Tian C J. 2013. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen. Microbiology China, 40 (1):158-171.[in Chinese]) 姜 萍, 赵 光, 叶 吉, 等. 2003.长白山北坡森林群落结构组成及其海拔变化. 生态学杂志, 22 (6):28-32. (Jiang P, Zhao G, Ye J, et al. 2003. Structure of forest communities on the northern slope of Changbai Mountain and its variation along elevation gradients. Chinese Journal of Ecology, 22 (6):28-32.[in Chinese]) 李阜棣.1996.土壤微生物学.北京:中国农业出版社. (Li F L. 1996. Soil Microbiology. Beijing:China Agriculture Press.[in Chinese]) 李景文,葛剑平,马建路,等. 1997. 红松混交林生态与经营. 哈尔滨:东北林业大学出版社. (Li J W, Ge J P, Ma J L, et al. 1997. The ecology and management of Korean pine mixed forest. Harbin:Northeast Forest University Press.[in Chinese]) 李延茂,胡江春,汪思龙,等. 2004. 森林生态系统中土壤微生物的作用与应用. 应用生态学报, 15 (10):1943-1946. (Li Y M, Hu J C, Wang S L,et al. 2004. Function and application of soil microorganisms in forest ecosystem. Cinese Journal of Applied Ecology, 15 (10):1943-1946.[in Chinese]) 刘 纯, 刘延坤, 金光泽, 等. 2014. 小兴安岭6种森林类型土壤微生物量的季节变化特征.生态学报,34 (2):451-459. (Liu C, Liu Y K, Jin G Z, et al. 2014. Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing'an Mountains, China. Acta Ecologica Sinica, 34 (2):451-459.[in Chinese]) 刘光崧. 1996. 土壤理化分析与剖面描述. 北京:中国标准出版社. (Liu G S. 1996. Soil physical & chemical analysis and the profile description. Beijing:China Standards Press.[in Chinese]) 刘国华, 傅伯杰, 方精云. 2000. 中国森林碳动态及其对全球碳平衡的贡献. 生态学报, 20 (5):733-740. (Liu G H, Fu B J, Fang J Y. 2000. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecologica Sinica, 20 (5):733-740.[in Chinese]) 刘润进,焦 惠,李 岩, 等. 2009. 丛枝菌根真菌物种多样性研究进展. 应用生态学报, 20 (9):2301-2307. (Liu R J, Jiao H, Li Y, et al. Research advances in species diversity of arbuscular mycorrhizal fungi. Cinese Journal of Applied Ecology, 20(9):2301-2307.[in Chinese]) 刘 爽, 王传宽. 2010. 五种温带森林土壤微生物生物量碳氮的时空格局. 生态学报, 30 (12):3135-3143. (Liu S, Wang C K. 2010. Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems. Acta Ecologica Sinica, 30 (12):3135-3143.[in Chinese]) 鲁如坤. 2000. 土壤农业化学分析方法. 北京:中国农业科技出版社. (Lu R K. 2000. The method of soil agricultural chemical analysis. Beijing:China Agriculture Science & Technology Press.[in Chinese]) 王国兵,阮宏华,唐燕飞, 等. 2008. 北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态. 应用生态学报, 19(1):100-104. (Wang G B, Ruan H H, Tang Y F, et al. 2008. Seasonal fluctuation of soil microbial biomass carbon in secondary oak forest and Pinus taeda plantation in north subtropical area of China. Cinese Journal of Applied Ecology, 19 (1):37-42.[in Chinese]) 吴家兵, 关德新, 张 弥, 等. 2007. 长白山阔叶红松林碳收支特征. 北京林业大学学报,29 (1):1-6. (Wu J B, Guan D X, Zhang M, et al. 2007. Carbon budget characteristics of the broadleaved Korean pine forests in Changbaishan Mountains. Journal of Beijing Forestry University, 29 (1):1-6.[in Chinese]) 许光辉, 郑洪元, 张德生, 等. 1984. 长白山北坡自然保护区森林土壤微生物生态分布及其生化特性的研究.生态学报, 4 (3):207-222. (Xu G H, Zheng H Y, Zhang D S, et al. 1984. Study on ecological distribution and biochemical properties of forest soil microorganisms on the northern slope of the Changbaishan Mountain natural reserve. Acta Ecologica Sinica, 4 (3):207-222.[in Chinese]) 杨 凯,朱教君,张金鑫, 等. 2009. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化.生态学报, 29 (10):5500-5507. (Yang K, Zhu J J, Zhang J X, et al. 2009.Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in Northeastern China. Acta Ecologica Sinica, 29(10):5500-5507.[in Chinese]) 张 娜, 于贵瑞, 赵士洞,等. 2003. 长白山自然保护区生态系统碳平衡研究. 环境科学, 24 (1):24-32. (Zhang N, Yu G R, Zhao S D, et al. 2004. Carbon budget of ecosystem in Changbai Mountain Natural Reserve.Environmental Science, 24 (1):24-32.[in Chinese]) 赵淑清, 方精云, 宗占江, 等. 2004.长白山北坡植物群落组成、结构及物种多样性的垂直分布. 生物多样性, 12 (1):164-173. (Zhao S Q, Fang J Y, Zong Z J, et al. 2004. Composition, structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt. Changbai, Northeast China. Chinese Biodiversity,12 (1):164-173.[in Chinese]) Anderson T H, Domsch KH. 1980. Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci, 130:211-216. Arancon N Q, Edwards C A, Bierman P.2006.Influences of vermicomposts on field strawberries:Part 2.Effects on soil microbiological and chemical properties. Bioresource Technology, 97(6):831-840. Arnold S S,Fernandez I J,Rustad L E, et al. 1999. Microbial response of an acid forest soil to experimental soil warming. Biol Fertil Soils, (30):239-244. Ashish M, Evgenia B, Gerd G.2013.Soil microbial carbon turnover decreases with increasing molecular size.Soil Biology & Biochemistry, 62:115-118. Bailey V L, Smith J L, Bolton J H. 2002. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology & Biochemistry, 34:997-1007. Bauhus J. 1998. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology & Biochemistry,30(8/9):1077-1089. Bohlen P J, Groffinan P M, Driscoll C T, et al. 2001. Plant-soil-microbial interactions in a northern hardwood forest. Ecology, 82(4):965-978. Chodak M, Niklinska M. 2010. Effect of texture and tree species on microbial properties of mine soils. Applied Soil Ecology, 46(2):268-275. Clarholm M. 1985. Possible role of roots, bacteria, protozoa and fungi in supplying N to plants//Fitter A H, Atkinson D J, Read J. Ecological Interactions in Soils, Oxford:Blackwell Scientific Publication,355-365. Devi N B, Yadava P S. 2006. Seasonal dynamics in soil microbial biomass C, N and P in amixed-oak forest ecosystem of Manipur, Northeast India. Applied Soil Ecology, 31:220-22. Irene F T, Felipe B, Teresa H, et al. 2014. The role of lignin and cellulose in the carbon-cycling of degraded soils under semiarid climate and their relation to microbial biomass.Soil Biology & Biochemistry, 75:152-160. Kautz T, Wirth S, Ellmer F. 2004. Microbial activity in a sandy arable soil is governed by the fertilization regime. European Journal of Soil Biology, 40:87-94. Luan J W, Liu S R, Wang J X, et al. 2011. Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China. Soil Biology and Biochemistry, 43(3):503-512. McLaughlin M J, Alston A M, Martin J K. 1986. Measurement of phosphorus in the soil microbial biomass:A modified procedure for field soils. Soil Biology & Biochemistry, 18:437-443. Moore J M, Susanne K, Tabatabai M A. 2000. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol Fertil Soils, 31:200-210. Paul E A, Clark F E. 1996. Soil Microbiology and Biochemistry. San Diego:Academic Press. Powlson D S, Prookes P C, Fabrício B, et al. 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry, 19(2):159-164. Qiu S J, Ju X T, Ingwerson J, et al. 2010.Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production.Soil and Tillage Research,107:80-87. Roy A, Singh K P. 2003. Dynamics of microbial biomass and nitrogen supply during primary succession on blastfurnace slag dumps in dry tropics.Soil Biology & Biochemistry, 35:365-372. Sarathchandra S U, Perrott K W, Boase M R, et al. 1988. Seasonal changes and the effects of fertilizer on some chemical, biochemical and microbiological characteristics of high-producing pastoral soil. Biology and Fertility of Soils, 6:328-335. Sparling G P, Shepherd T G, Kettles H A. 1992. Changes in soil organic C, microbial C and aggregate stability under continuous maize and cereal cropping, and after restoration to pasture in soils from the Manawatu region, New Zealand. Soil and Tillage Research, 24(3):225-241. Thoms C,Gattinger A, Jacob M, et al. 2010. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology & Biochemistry, 42(9):1558-1565. Warren M, Zou X M. 2003. Seasonal nitrogen retention in temperate hardwood forests the "vernal dam" hypothesis and case studies. Acta Phytoecologica Sinica, 27(1):11-15. Wardle D A. 1998. Controls of temporal variability of the soil microbial biomass:A global-Scale synthesis. Soil Biology & Biochemistry, 30(13):1627-1637. Wu J, Jorgensen R G, Birgit P R, et al. 1990. Measurement of soil microbial biomass C by fumigation-extraction an automated procedure. Soil Biology & Biochemistry, 22:1167-1169. Zak D R, Groffman P M, Pregitzer K S, et al. 1990. The "Vemal Dam":plant-microbe competition for nitrogen in northern hardwood forests. Ecology, 71:651-656. |