|
成俊卿. 1985. 木材学. 北京: 中国林业出版社.
|
|
Cheng J Q. 1985. Wood science. Beijing: China Forestry Publishing House. [in Chinese]
|
|
成俊卿, 杨家驹, 刘 鹏. 1992. 中国木材志. 北京: 中国林业出版社.
|
|
Cheng J Q, Yang J J, Liu P. 1992. China woods. Beijing: China Forestry Publishing House. [in Chinese]
|
|
丁馨曾, 赵海龙, 申珂楠, 等. 声发射技术在木材干燥中的应用与发展. 西北林学院学报, 2015, 30 (3): 242- 244,292.
|
|
Ding X Z, Zhao H L, Shen K N, et al. Application of acoustic emission technique in wood drying. Journal of Northwest Forestry University, 2015, 30 (3): 242- 244,292.
|
|
刘 昊, 高建民. 含水率和密度对木材应力波传播速度的影响. 北京林业大学学报, 2014, 36 (6): 154- 158.
|
|
Liu H, Gao J M. Effects of moisture content and density on the stress wave velocity in wood. Journal of Beijing Forestry University, 2014, 36 (6): 154- 158.
|
|
彭 辉, 蒋佳荔, 詹天翼, 等. 木材密度和含水率对其轴向超声波传播速度的影响. 林业科学, 2016, 52 (10): 117- 124.
|
|
Peng H, Jiang J L, Zhan T Y, et al. Influence of density and moisture content on ultrasound velocities along the longitudinal direction in wood. Scientia Silvae Sinicae, 2016, 52 (10): 117- 124.
|
|
申珂楠, 赵海龙, 丁馨曾, 等. 声发射技术在木材加工领域的应用. 世界林业研究, 2015, 28 (1): 56- 60.
|
|
Shen K N, Zhao H L, Ding X Z, et al. Application of acoustic emission in wood processing. World Forestry Research, 2015, 28 (1): 56- 60.
|
|
Sandoz J L, 殷亚方, Benoit Y, 等. 木材声学-超声波分等检测技术及工业应用. 木材工业, 2007, 21 (6): 27- 30.
|
|
Sandoz J L, Yin Y F, Benoit Y, et al. An acousto-ultrasonic timber grading and inspection technology and industrial applications. China Wood Industry, 2007, 21 (6): 27- 30.
|
|
王千雪, 韩大校, 申方圆, 等. 大兴安岭兴安落叶松天然林结构特征. 温带林业研究, 2019, 2 (1): 47- 53.
|
|
Wang Q X, Han D X, Shen F Y, et al. Structure characters of Larix gmelinii natural forest in Daxing’an Mountain. Journal of Temperate Forestry Research, 2019, 2 (1): 47- 53.
|
|
徐华东, 王立海. 温度和含水率对红松木材中应力波传播速度的影响. 林业科学, 2011, 47 (9): 123- 128.
|
|
Xu H D, Wang L H. Effects of moisture content and temperature on propagation velocity of stress waves in Korean pine wood. Scientia Silvae Sinicae, 2011, 47 (9): 123- 128.
|
|
杨慧敏, 王立海. 木材缺陷与超声检测参数相关性及影响因素. 东北林业大学学报, 2015, 43 (8): 114- 116.
|
|
Yang H M, Wang L H. Correlation and influencing factors between wood defect and ultrasonic propagation parameters. Journal of Northeast Forestry University, 2015, 43 (8): 114- 116.
|
|
叶克林, 吕建雄, 殷亚方. 我国高强度结构材加工利用技术的研究进展. 木材工业, 2009, 23 (1): 4- 6.
|
|
Ye K L, Lü J X, Yin Y F. R & D of dimension lumber processing and application in China. China Wood Industry, 2009, 23 (1): 4- 6.
|
|
周 崟, 姜笑梅. 1990. 中国裸子植物材的木材解剖学及超微构造. 北京: 中国林业出版社.
|
|
Zhou Y, Jiang X M. 1990. Wood anatomy and ultrastructure of gymnospermous woods in China. Beijing: China Forestry Publishing House. [in Chinese]
|
|
周 竹, 尹建新, 周素茵, 等. 基于近红外光谱技术的针叶材板材表面节子缺陷检测. 浙江农林大学学报, 2017, 34 (3): 520- 527.
|
|
Zhou Z, Yin J X, Zhou S Y, et al. Knot detection on coniferous wood surfaces based on near infrared spectroscopy. Journal of Zhejiang A & F University, 2017, 34 (3): 520- 527.
|
|
张训亚, 姜笑梅, 吕 斌, 等. 声−超声技术评价兴安落叶松规格材的抗弯性质. 林业科学, 2014, 50 (10): 94- 98.
|
|
Zhang X Y, Jiang X M, Lü B, et al. Evaluation of bending properties of larch dimension lumber with acousto-ultrasonic technique. Scientia Silvae Sinicae, 2014, 50 (10): 94- 98.
|
|
张训亚, 姜笑梅, 殷亚方. 不同方向落叶松木材声−超声参数特征及其与密度关系研究. 木材加工机械, 2017, 28 (4): 24- 28.
doi: 10.13594/j.cnki.mcjgjx.2017.04.006
|
|
Zhang X Y, Jiang X M, Yin Y F. Study on acousto-ultrasonic parameters of larch wood in different directions and its density relationship. Wood Processing Machinery, 2017, 28 (4): 24- 28.
doi: 10.13594/j.cnki.mcjgjx.2017.04.006
|
|
Beall F C, Reis H, Senalik A, et al. Ultrasonic nondestructive evaluation of wood and wood products-past, present and future. Pro Ligno, 2013, 9 (4): 540- 546.
|
|
Beall F C. Overview of the use of ultrasonic technologies in research on wood properties. Wood Science and Technology, 2002, 36 (3): 197- 212.
doi: 10.1007/s00226-002-0138-4
|
|
Brashaw B K, Bucur V, Divos F, et al. 2009. Nondestructive testing and evaluation of wood: a worldwide research update. Forest Product Journal, 59(3): 7−14.
|
|
Chan J M, Walker J C, Raymond C A. Effects of moisture content and temperature on acoustic velocity and dynamic MOE of radiata pine sapwood boards. Wood Science and Technology, 2011, 45 (4): 609- 626.
doi: 10.1007/s00226-010-0350-6
|
|
de Oliveira F G R, Candian M, Lucchette F F, et al. Moisture content effect on ultrasonic velocity in Goupia glabra. Materials Research, 2005, 8 (1): 11- 14.
doi: 10.1590/S1516-14392005000100004
|
|
El-Hadad A, Brodie G I, Ahmed B S. The effect of wood condition on sound wave propagation. Open Journal of Acoustics, 2018, 8 (3): 37- 51.
doi: 10.4236/oja.2018.83004
|
|
Gao S, Wang X P, Wang L H, et al. 2012. Effect of temperature on acoustic evaluation of standing trees and logs: part 1-laboratory investigation. Wood and Fiber Science, 44(3): 286−297.
|
|
Gao S, Wang X P, Wang L H, et al. 2013. Effect of temperature on acoustic evaluation of standing trees and logs: part 2-field investigation. Wood and Fiber Science, 45(1): 15−25.
|
|
Gerhards C. Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood and Fiber Science, 1982, 14 (1): 4- 36.
|
|
Han C L. Bending strength and acousto-ultrasonic characterization of Japanese Cedar exposed to the outdoors. Turkish Journal of Agriculture and Forestry, 2004, 2 (1): 95- 109.
|
|
Kang H, Booker R E. Variation of stress wave velocity with MC and temperature. Wood Science and Technology, 2002, 36 (1): 41- 54.
doi: 10.1007/s00226-001-0129-x
|
|
Karsulovic J T, León L A, Gaete L. Ultrasonic detection of knots and annual ring orientation in Pinus radiata lumber. Wood and Fiber Science, 2000, 32 (3): 278- 286.
|
|
Llana D F, Íñiguez-González G, Martínez R D, et al. Influence of timber moisture content on wave time-of-flight and longitudinal natural frequency in coniferous species for different instruments. Holzforschung, 2018, 72 (5): 405- 411.
doi: 10.1515/hf-2017-0113
|
|
Pommier R, Breysse D, Dumail J F. Non-destructive grading of green Maritime pine using the vibration method. European Journal of Wood and Wood Products, 2013, 71 (5): 663- 673.
doi: 10.1007/s00107-013-0727-y
|
|
Quarles S L. The effect of moisture content and ring angle on the propagation of acoustic signals in wood. Journal of Acoustic Emission, 1990, 9 (3): 189- 195.
|
|
Sakai H, Minamisawa A, Takagi K. Effect of moisture content on ultrasonic velocity and attenuation in woods. Ultrasonics, 1990, 28 (6): 382- 385.
doi: 10.1016/0041-624X(90)90060-2
|
|
Sandoz J L. Moisture content and temperature effect on ultrasound timber grading. Wood Science and Technology, 1993, 27 (5): 373- 380.
|
|
Tejedor B, Lucchi E, Bienvenido-Huertas D, et al. Non-Destructive Techniques (NDT) for the diagnosis of heritage buildings: traditional procedures and futures perspectives. Energy & Buildings, 2022, 263 (5): 112029.
|
|
Watanabe K, Kobayashi I, Saito S, et al. Nondestructive evaluation of drying stress level on wood surface using near-infrared spectroscopy. Wood Science and Technology, 2013, 47 (2): 299- 315.
doi: 10.1007/s00226-012-0492-9
|
|
Yang H M, Yu L, Wang L H. Effect of moisture content on the ultrasonic acoustic properties of wood. Journal of Forestry Research, 2015, 26 (3): 753- 757.
doi: 10.1007/s11676-015-0079-z
|
|
Yang T H, Wang S Y, Lin C J, et al. Evaluation of the mechanical properties of Douglas-fir and Japanese cedar lumber and its structural glulam by nondestructive techniques. Construction and Building Materials, 2008, 22 (4): 487- 493.
doi: 10.1016/j.conbuildmat.2006.11.012
|
|
Zhou Z, Yin J X, Zhou S Y, et al. Detection of knot defects on coniferous wood surface using near infrared spectroscopy and chemometrics. BioResources, 2016, 11 (4): 9533- 9546.
|