欢迎访问林业科学,今天是

林业科学 ›› 2026, Vol. 62 ›› Issue (1): 144-155.doi: 10.11707/j.1001-7488.LYKX20240822

• 研究论文 • 上一篇    下一篇

基于改进YOLOv9的蓝莓果实成熟度检测方法

王海滨1,沈钦星1,马鹏伟2,宋佳音1,*()   

  1. 1. 东北林业大学机电工程学院 哈尔滨 150040
    2. 石河子大学信息科学与技术学院 石河子 832003
  • 收稿日期:2024-12-31 修回日期:2025-08-20 出版日期:2026-01-25 发布日期:2026-01-14
  • 通讯作者: 宋佳音 E-mail:jiayin1980@126.com
  • 基金资助:
    哈尔滨市制造业科技创新人才项目(CXRC20231115883);黑龙江省自然科学基金(LH2020C047);中国博士后科学基金(2019T120248)。

Fruit Ripeness Detection Method of Blueberry Based on Improved YOLOv9

Haibin Wang1,Qinxing Shen1,Pengwei Ma2,Jiayin Song1,*()   

  1. 1. College of Mechanical and Electrical Engineering, Northeast Forestry University Harbin 150040
    2. College of Information Science and Technology, Shihezi University Shihezi 832003
  • Received:2024-12-31 Revised:2025-08-20 Online:2026-01-25 Published:2026-01-14
  • Contact: Jiayin Song E-mail:jiayin1980@126.com

摘要:

目的: 针对现有蓝莓果实成熟度检测方法在复杂自然环境下的检测性能不佳,且对实际采摘作业中镜头离焦模糊和多角度成像的鲁棒性不足,导致收集的果实中生果混杂率高、收获质量难以保障的问题,提出一种改进的YOLOv9检测方法,旨在实现高精度的成熟度识别,为基于视觉的采摘转速动态调控提供算法支撑。方法: 以YOLOv9模型为基础,将MobileNetV4引入YOLOv9模型中作为骨干特征提取网络,减少网络的参数量和计算负担;在YOLOv9的颈部网络中引入GAM注意力机制模块,调整每个特征的权重,使模型更好地聚焦在对目标检测最重要的特征区域,进而增强模型对关键区域的识别能力,提高检测的准确性和鲁棒性;采用WIoU作为损失函数,优化模型的定位精度,提升边界框预测的准确性,加快网络收敛速度。利用蓝莓采摘试验台进行采摘试验,验证模型是否满足蓝莓采摘机器的精度和速度要求,并得到采摘装置采摘不同成熟果实比例的蓝莓植株时的最佳转速。结果: 改进后的YOLOv9模型在测试集上的精确率为98.0%,召回率为97.2%,平均精度均值(mAP)为98.2%,检测帧速率为86.5 fps,对比SSD、Faster R-CNN、YOLOv5和YOLOv8模型,平均精度均值分别提升6.8、5.6、4.0、2.7个百分点。改进后的模型满足采摘系统要求,在蓝莓植株的成熟果实比例为90%~ 100%、85%~ 90%和80%~ 85%时,采摘装置最佳转速分别为125 r·min?1、130 r·min?1和140 r·min?1结论: 改进后的YOLOv9模型较原模型提高了检测性能,通过蓝莓采摘试验得到的最佳转速能够降低生果率,为蓝莓果实智能化采摘提供强有力技术支持。

关键词: 蓝莓成熟度检测, YOLOv9, MobileNetV4, GAM, WIoU

Abstract:

Objective: The existing blueberry fruit ripeness detection methods exhibit poor performance in complex natural environments and insufficient robustness against lens defocus blur and multi-angle imaging in actual harvesting operations, resulting in high contamination rates of unripe fruits and difficulties in ensuring harvest quality. Aiming at the above issues, an improved YOLOv9 detection method is proposed to achieve high-precision ripeness recognition, providing algorithmic support for vision-based dynamic adjustment of harvesting speed. Method: Based on the YOLOv9 model, MobileNetV4 was introduced into the YOLOv9 model as the backbone feature extraction network to reduce the number of parameters and computational burden of the network. Additionally, a GAM attention module was integrated into the neck network of YOLOv9, and the weight of each feature was adjusted to enable the model to better focus on the most important feature areas for target detection, thereby enhancing its ability to recognize key regions and improving detection accuracy and robustness. WIoU was employed as the loss function to optimize the model's localization accuracy, improve boundary box prediction accuracy, and accelerate network convergence. Blueberry harvesting experiments were conducted on a picking test platform to verify whether the model meets the precision and speed requirements for blueberry harvesters, and to determine the optimal harvesting speed when harvesting blueberries with different fruit maturity ratios. Result: The improved YOLOv9 model achieved a precision of 98.0%, recall of 97.2%, an average precision mean (mAP) of 98.2%, and a detection frame rate of 86.5 fps on the test set. Compared with SSD, Faster R-CNN, YOLOv5, and YOLOv8 models, the average precision mean improved by 6.8, 5.6, 4.0, and 2.7 percentage points, respectively. The improved model met the requirements of the harvesting system. When the proportion of mature fruits on blueberry plants was 90%~100%, 85%~90%, and 80%~85%, the optimal harvesting speeds were 125 r·min?1, 130 r·min?1, and 140 r·min?1, respectively. Conclusion: The improved YOLOv9 model has significantly enhanced detection performance compared to the original model. The optimal harvesting speeds obtained through blueberry harvesting tests can reduce the rate of unripe fruits, providing strong technical support for the intelligent harvesting of blueberries.

Key words: blueberry maturity detection, YOLOv9, MobileNetV4, GAM, WIoU

中图分类号: