欢迎访问林业科学,今天是

林业科学 ›› 2026, Vol. 62 ›› Issue (1): 156-163.doi: 10.11707/j.1001-7488.LYKX20250013

• 研究论文 • 上一篇    下一篇

含水率和温度对兴安落叶松木材声−超声参数的影响

张训亚1,虞华强2,殷亚方2,*(),姜笑梅2   

  1. 1. 阜阳职业技术学院 阜阳 236031
    2. 中国林业科学研究院木材工业研究所 北京 100091
  • 收稿日期:2025-01-28 修回日期:2025-06-23 出版日期:2026-01-25 发布日期:2026-01-14
  • 通讯作者: 殷亚方 E-mail:yafang@caf.ac.cn
  • 基金资助:
    阜阳职业技术学院高层次人才教科研启动基金(2024BSGZS07)。

Effect of Moisture Content and Temperature on Acousto-Ultrasonic Parameters of Larix gmelinii Wood

Xunya Zhang1,Huaqiang Yu2,Yafang Yin2,*(),Xiaomei Jiang2   

  1. 1. Fuyang Institute of Technology Fuyang 236031
    2. Research Institute of Wood Industry, Chinese Academy of Forestry Beijing 100091
  • Received:2025-01-28 Revised:2025-06-23 Online:2026-01-25 Published:2026-01-14
  • Contact: Yafang Yin E-mail:yafang@caf.ac.cn

摘要:

目的: 探究含水率和温度对兴安落叶松木材声?超声参数的影响规律,为木材声?超声无损检测技术的应用提供理论基础和科学依据。方法: 在不同含水率(6%、12%、24%和85%)和不同温度(?20 ℃、0 ℃、20 ℃和40 ℃)条件下,测量兴安落叶松木材无疵小试样的超声波波速、峰值电压、均方根电压和频率形心4个声?超声参数,比较各声?超声参数在不同含水率和温度下的差异显著性和变化,分析含水率和温度对木材声?超声参数的影响及原因。结果: 1) 含水率和温度对波速、峰值电压、均方根电压和频率形心均有显著影响(P<0.05),且含水率和温度的交互影响极显著(P<0.001);2) 0 ℃、20 ℃和40 ℃时,波速、峰值电压和均方根电压随含水率升高呈降低趋势;?20 ℃时,随含水率升高,波速呈降低趋势,峰值电压、均方根电压和频率形心变化趋势不明显、变化幅度较小;3) ?20 ℃、0 ℃、20 ℃和40 ℃温度条件下,6%、12%、24%含水率之间的频率形心差异较小,均显著高于含水率85%时的频率形心;4) 6%、12%、24%含水率条件下,温度对波速、峰值电压、均方根电压和频率形心的影响均较小;85%含水率条件下,?20 ℃时,峰值电压、均方根电压和频率形心显著高于其他温度时的声?超声参数,0 ℃、20 ℃和40 ℃温度条件下峰值电压、均方根电压和频率形心之间的差异性均不显著,且?20 ℃、0 ℃、20 ℃和40 ℃温度条件下波速之间的差异性也均不显著(P>0.05)。结论: 1) 对饱水兴安落叶松木材,?20 ℃时,水的结冰显著增强超声波的传播能力,与0 ℃、20 ℃和40 ℃温度相比,峰值电压、均方根电压和频率形心显著增加,但波速变化不显著;纤维饱和点以下的兴安落叶松木材,温度对超声波在木材中的传播影响很小;2) 温度大于等于0 ℃时,由于水的黏滞作用,含水率对超声波在木材中的传播速度和能量衰减影响显著,波速、峰值电压和均方根电压随含水率升高而降低;?20 ℃时,随含水率升高,波速呈降低趋势,但由于水的相态变化,含水率对超声波在木材中的传播能量无显著影响,峰值电压和均方根电压变化幅度较小;3) 温度大于等于0 ℃时,木材含水率低于纤维饱和点的情况下含水率对频率形心的影响很小,木材含水率高于纤维饱和点的情况下细胞腔内大量自由水导致超声波信号中的高频成分衰减,其频率形心显著降低;?20 ℃时,含水率对频率形心无显著影响。

关键词: 兴安落叶松, 无损检测, 含水率, 温度, 声?超声参数

Abstract:

Objective: This study aims to explore the influence of moisture content (MC) and temperature (T) on acousto-ultrasonic (AU) parameters of Larix gmelinii wood in order to provide theoretical basis and scientific basis for the application of acousto-ultrasonic nondestructive testing technology in wood research field. Method: Four acousto-ultrasonic parameters including wave velocity (V), amplitude voltage (A), root mean square voltage (RMS), frequency-centroid (FC) of small clear specimens of L. gmelinii were measured under four moisture content levels (6%, 12%, 24%, 85%) and four temperature levels (?20 ℃, 0 ℃, 20 ℃, 40 ℃). The significance of difference and changes of each AU parameter under different moisture content and temperature conditions were compared, the influence of moisture content and temperature on different acoustic-ultrasonic parameters of wood and the reasons were analyzed. Result: 1) Moisture content and temperature had significant effects on each acousto-ultrasonic parameter of wave velocity, amplitude voltage, root mean square voltage and frequency centroid (P<0.05), and the interaction between moisture content and temperature was extremely significant (P<0.001). 2) The wave velocity, amplitude voltage and root mean square voltage decreased with the increase of moisture content at the temperature of 0 ℃, 20 ℃ and 40 ℃. The wave velocity decreased with the increase of moisture content, but the change trend of amplitude voltage, root mean square voltage and frequency-centroid was not obvious and the change range was small at the temperature of ?20 ℃. 3) The difference of the frequency-centroid among the moisture content of 6%, 12% and 24% was small, and the frequency-centroid of the moisture content of 6%, 12% and 24% were all significantly higher than that of the moisture content of 85% at the temperature of ?20 ℃, 0 ℃, 20 ℃ and 40 ℃. 4) Temperature had little effect on wave velocity, amplitude voltage, root mean square voltage and frequency-centroid at the moisture content of 6%, 12% and 24%. The amplitude voltage, root mean square voltage and frequency-centroid at the temperature of ?20 ℃ were significantly higher than those at other temperatures, the differences among amplitude voltage, root mean square voltage and frequency-centroid at the temperature of 0 ℃, 20 ℃ and 40 ℃ were not significant, and there was no significant difference in wave velocity at the temperature of ?20 ℃, 0 ℃, 20 ℃ and 40 ℃ (P>0.05) at the moisture content of 85%. Conclusion: 1)For saturated larch wood, the water freezing significantly enhances the propagation ability of ultrasonic wave at the temperature of ?20 ℃. The amplitude voltage, root mean square voltage and frequency-centroid at the temperature of ?20 ℃ increases significantly compared with the temperature of 0 ℃, 20 ℃ and 40 ℃, but the change of wave velocity is not significant. For larch wood below fiber saturation point, temperature has little effect on ultrasonic wave propagation in wood. 2) When the temperature is greater than or equal to 0 ℃, moisture content has a significant effect on the propagation velocity and energy attenuation of ultrasonic wave in wood due to the viscosity of water, and the wave velocity, amplitude voltage and root mean square voltage decrease with the increase of moisture content. The wave velocity also tends to decrease with the increase of moisture content at the temperature of ?20 ℃. However, the moisture content has no significant effect on the propagation energy of ultrasonic wave in wood due to the phase change of water, and the change amplitude of amplitude voltage and root mean square voltage is small. 3) When the temperature is above or equal to 0 ℃, the influence of moisture content on the frequency-centroid is very small if the moisture content of wood is lower than the fiber saturation point, while the frequency-centroid decreases significantly if the moisture content of wood is higher than the fiber saturation point, because a large amount of free water in the cell cavity leads to the attenuation of high-frequency components in the ultrasonic signal. Moisture content has no significant effect on frequency-centroid atthe temperature of ?20 ℃.

Key words: Larix gmelinii, nondestructive testing, moisture content, temperature, acousto-ultrasonic (AU) parameters

中图分类号: