林业科学 ›› 2025, Vol. 61 ›› Issue (4): 69-80.doi: 10.11707/j.1001-7488.LYKX20240535
李钦渊1,2,3,周泽园4,李廷山5,于海群4,赵洪贤1,2,3,刘新月1,2,3,高瑶1,2,3,刘鹏1,2,3,查天山1,2,3,*()
收稿日期:
2024-09-17
出版日期:
2025-04-25
发布日期:
2025-04-21
通讯作者:
查天山
E-mail:tianshanzha@bjfu.edu.cn
基金资助:
Qinyuan Li1,2,3,Zeyuan Zhou4,Tingshan Li5,Haiqun Yu4,Hongxian Zhao1,2,3,Xinyue Liu1,2,3,Yao Gao1,2,3,Peng Liu1,2,3,Tianshan Zha1,2,3,*()
Received:
2024-09-17
Online:
2025-04-25
Published:
2025-04-21
Contact:
Tianshan Zha
E-mail:tianshanzha@bjfu.edu.cn
摘要:
目的: 探究华北落叶松天然次生林生态系统碳、光能、水分利用效率的生长季内季节变异特征、受生物物理因子的影响以及不同资源利用效率间的权衡关系,为预测未来森林生态系统的气候变化响应提供科学支撑。方法: 在北京百花山国家级自然保护区,利用涡度相关系统和微气象观测系统对华北落叶松天然次生林生态系统生长季内的碳、水通量和空气温度、土壤温度、土壤含水量等物理因子进行连续原位监测,分析生态系统碳、光能和水分利用效率的季节变异及影响因素,并探究不同资源利用效率间的权衡关系。结果: 1) 生长季内碳利用效率6月较低、10月较高,波动在0.14~0.97;光能利用效率8月份高、10月较低,波动在0.15~2.19 g·MJ?1;水分利用效率6月较低、10月较高,波动在0.74~8.00 g·kg?1。2) 碳利用效率与土壤温度显著负相关(P < 0.05),光能利用效率与土壤含水量显著正相关(P < 0.05),水分利用效率与土壤含水量显著负相关(P < 0.05)。结构方程模型表明,土壤温度通过影响生态系统呼吸间接影响碳利用效率,表现为负效应(P < 0.05);散射辐射通过影响总初级生产力间接影响光能利用效率,表现为正效应(P < 0.05);饱和水汽压差通过影响蒸散发间接影响水分利用效率,表现为负效应(P < 0.05)。3) 碳利用效率与水分利用效率显著正相关(P < 0.01),较高的光能利用效率主要发生在碳利用效率和水分利用效率均较低时。结论: 华北落叶松天然次生林生态系统碳利用效率与水分利用效率变化趋势一致,均在生长季中期下降,光能利用效率在生长季中期达到最大值。土壤温度升高会降低生态系统碳利用效率,土壤含水量和散射辐射增加均会提高生态系统光能利用效率,土壤含水量和饱和水汽压差增加会限制水分利用效率。生态系统资源利用效率间存在权衡关系,较高的光能利用效率伴随着较低的碳和水分利用效率,本研究结果强调水分条件对华北落叶松天然次生林生态系统资源利用效率间权衡关系的重要性。
中图分类号:
李钦渊,周泽园,李廷山,于海群,赵洪贤,刘新月,高瑶,刘鹏,查天山. 北京百花山华北落叶松天然次生林的资源利用效率生长季动态变化及影响因素[J]. 林业科学, 2025, 61(4): 69-80.
Qinyuan Li,Zeyuan Zhou,Tingshan Li,Haiqun Yu,Hongxian Zhao,Xinyue Liu,Yao Gao,Peng Liu,Tianshan Zha. Growing Season Dynamics and Influencing Factors of Resource Use Efficiency of a Larix gmelinii var. principis-rupprechtii Natural Secondary Forest in Baihuashan, Beijing[J]. Scientia Silvae Sinicae, 2025, 61(4): 69-80.
表1
观测站点装设仪器信息"
项目 Item | 仪器名称 Name of instrument | 布设高度 Layout height | 测定指标 Determination index |
涡度相关系统 Eddy covariance system | 三维超声风速仪(WindMaster) Three-dimensional ultrasonic anemometer | 20 m | 三维风速 Three-dimensional wind speed 空气温度 Air temperature |
CO2/H2O红外气体分析仪(LI-7500DS) CO2/H2O infrared gas analyzer | 20 m | CO2/H2O浓度 CO2/H2O concentration | |
微气象观测系统 Micrometeorological observation system | 土壤水分和温度传感器(TEROS11) Soil temperature and humidity sensor | 地下15 cm处 15 cm below ground | 土壤温度 Soil temperature、 土壤含水量 Soil water content |
空气温湿度传感器(HMP155A) Air temperature and humidity sensor | 2 m, 20 m | 空气温度 Air temperature、 空气相对湿度 Relative humidity | |
降水量传感器(TE525) Precipitation sensor | 2 m, 20 m | 降水量 Precipitation | |
光合有效辐射传感器(LI-190R) Photosynthetically active radiation sensor) | 20 m | 光合有效辐射 Photosynthetically active radiation | |
散射辐射传感器(BF5) Diffuse radiation sensor | 20 m | 散射辐射 Diffuse radiation |
表2
生物物理因子对资源利用效率的标准化总效应"
项目Item | 空气温度 Air temperature | 土壤温度 Soil temperature | 光合有效辐射 Photosynthetically active radiation | 散射辐射 Diffuse radiation | 土壤含水量 Soil water content | 饱和水汽压差 Vapor pressure deficit | 冠层导度 Canopy conductance |
碳利用效率 Carbon use efficiency | ?0.12 | ?0.68 | 0.31 | 0.27 | ?0.26 | ||
光能利用效率 Light use efficiency | 0.11 | 0.17 | ?0.06 | 0.35 | |||
水分利用效率 Water use efficiency | ?0.58 | 0.23 | 0.20 | ?0.24 | ?0.61 | ?0.56 |
蒋 燕, 靳 川, 姜晓燕, 等. 油蒿叶片资源利用效率变化及其影响因素. 生态学报, 2022, 42 (15): 6196- 6208. | |
Jiang Y, Jin C, Jiang X Y, et al. Relative changes and biophysical controls of leaf resource use efficiencies in Artemisia ordosica. Acta Ecologica Sinica, 2022, 42 (15): 6196- 6208. | |
皮志豪, 刘宏伟, 王 旭, 等. 海南霸王岭不同起源林分森林群落特征及乔木碳储量研究. 湖南林业科技, 2024, 51 (3): 19- 26, 35.
doi: 10.3969/j.issn.1003-5710.2024.03.003 |
|
Pi Z H, Liu H W, Wang X, et al. Study on forest community characteristics and tree carbon storage of different origin stands in Bawangling, Hainan Province. Hunan Forestry Science & Technology, 2024, 51 (3): 19- 26, 35.
doi: 10.3969/j.issn.1003-5710.2024.03.003 |
|
张 菲, 张 岩. 塞罕坝地区天然次生林顶级树种自然化混交林经营技术研究. 现代园艺, 2023, 46 (14): 12- 14.
doi: 10.3969/j.issn.1006-4958.2023.14.005 |
|
Zhang F, Zhang Y. Study on management technology of naturalized mixed forest with top tree species in natural secondary forest in Saihanba area. Xiandai Horticulture, 2023, 46 (14): 12- 14.
doi: 10.3969/j.issn.1006-4958.2023.14.005 |
|
周 洁, 张志强, 孙 阁, 等. 不同土壤水分条件下杨树人工林水分利用效率对环境因子的响应. 生态学报, 2013, 33 (5): 1465- 1474. | |
Zhou J, Zhang Z Q, Sun G, et al. Environmental controls on water use efficiency of a poplar plantation under different soil water conditions. Acta Ecologica Sinica, 2013, 33 (5): 1465- 1474. | |
朱秀勤. 2014. 石林溶丘洼地区不同恢复阶段植物水分利用的稳定同位素研究. 昆明: 云南师范大学. | |
Zhu X Q. 2014. Stable isotope study on plant water utilization in different restoration stages in the karst hill and depression areas of Shilin. Kunming: Yunnan Normal University. [in Chinese] | |
Alton P B, North P R, Los S O. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 2007, 13 (4): 776- 787.
doi: 10.1111/j.1365-2486.2007.01316.x |
|
Bradford J B, Hicke J A, Lauenroth W K. The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity. Remote Sensing of Environment, 2005, 96 (2): 246- 255.
doi: 10.1016/j.rse.2005.02.013 |
|
Brümmer C, Black T A, Jassal R S, et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agricultural and Forest Meteorology, 2012, 153, 14- 30.
doi: 10.1016/j.agrformet.2011.04.008 |
|
Burba G G. Eddy covariance method for scientific, industrial, agricultural and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates. LI-COR Biosciences, 2013, Lincoln, USA. | |
Chen Z, Yu G R. Spatial variations and controls of carbon use efficiency in China’s terrestrial ecosystems. Scientific Reports, 2019, 9 (1): 19516.
doi: 10.1038/s41598-019-56115-5 |
|
Chen Z, Yu G R, Zhu X J, et al. Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: a global synthesis. Agricultural and Forest Meteorology, 2015, 203, 180- 190.
doi: 10.1016/j.agrformet.2015.01.012 |
|
Dunn A L, Barford C C, Wofsy S C, et al. A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biology, 2007, 13 (3): 577- 590.
doi: 10.1111/j.1365-2486.2006.01221.x |
|
Eichelmann E, Wagner-Riddle C, Warland J, et al. Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand. Agricultural and Forest Meteorology, 2016, 217, 108- 119. | |
Gang C, Wang Z, You Y, et al. Divergent responses of terrestrial carbon use efficiency to climate variation from 2000 to 2018. Global and Planetary Change, 2022, 208, 103709.
doi: 10.1016/j.gloplacha.2021.103709 |
|
Garbulsky M F, Peñuelas J, Papale D, et al. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Global Ecology and Biogeography, 2010, 19 (2): 253- 267.
doi: 10.1111/j.1466-8238.2009.00504.x |
|
He Y, Piao S L, Li X Y, et al. Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agricultural and Forest Meteorology, 2018, 256, 150- 158. | |
Hirata R, Saigusa N, Yamamoto S, et al. Spatial distribution of carbon balance in forest ecosystems across East Asia. Agricultural and Forest Meteorology, 2008, 148 (5): 761- 775.
doi: 10.1016/j.agrformet.2007.11.016 |
|
Jin C, Zha T S, Bourque C P A, et al. Multi-year trends and interannual variation in ecosystem resource use efficiencies in a young mixedwood plantation in northern China. Agricultural and Forest Meteorology, 2023, 330, 109318.
doi: 10.1016/j.agrformet.2023.109318 |
|
Keenan T F, Hollinger D Y, Bohrer G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 2013, 499 (7458): 324- 327.
doi: 10.1038/nature12291 |
|
Krishnan P, Black T A, Jassal R S, et al. Interannual variability of the carbon balance of three different-aged douglas-fir stands in the pacific northwest. Journal of Geophysical Research Biogeosciences, 2009, 114 (G4): 355- 355. | |
Law B E, Falge E, Gu L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 2002, 113 (1): 97- 120. | |
Li S G, Eugster W, Asanuma J, et al. Response of gross ecosystem productivity, light use efficiency, and water use efficiency of Mongolian steppe to seasonal variations in soil moisture. Journal of Geophysical Research-Atmospheres, 2008, 113 (G1): G01019. | |
Li X H, Black T A, Zha T S, et al. 2024. Long-term trend and interannual variation in evapotranspiration of a young temperate Douglas-fir stand over 2002–2022 reveals the impacts of climate change. Plant, Cell & Environment, 47(10): 3966-3978. | |
Liu P, Black T A, Jassal R S, et al. Divergent long-term trends and interannual variation in ecosystem resource use efficiencies of a southern boreal old black spruce forest 1999—2017. Global Change Biology, 2019, 25 (9): 3056- 3069.
doi: 10.1111/gcb.14674 |
|
López J, Way D A, Sadok W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology, 2021, 27 (9): 1704- 1720.
doi: 10.1111/gcb.15548 |
|
Ma J Y, Jia X, Zha T S, et al. Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought. Agricultural and Forest Meteorology, 2019, 275, 1- 10.
doi: 10.1016/j.agrformet.2019.05.004 |
|
Matsuo T, Martínez-Ramos M, Onoda Y, et al. 2024, Light competition drives species replacement during secondary tropical forest succession. Oecologia, 205(1): 1−11. | |
McGee K M, Eaton W D, Shokralla S, et al. 2019, Determinants of soil bacterial and fungal community composition toward carbon-use efficiency across primary and secondary forests in a Costa Rican conservation area. Microbial ecology, 77(1): 148−167. | |
Metcalfe D B, Meir P, Aragão L E O C, et al. Shifts in plant respiration and carbon use efficiency at a large‐scale drought experiment in the eastern Amazon. New Phytologist, 2010, 187 (3): 608- 621.
doi: 10.1111/j.1469-8137.2010.03319.x |
|
Monteith J L. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 1972, 9 (3): 747- 766.
doi: 10.2307/2401901 |
|
Monteith J L. 1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 281(980): 277–294. | |
Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 2006, 3 (4): 571- 583.
doi: 10.5194/bg-3-571-2006 |
|
Polley H W, Emmerich W, Bradford J A, et al. Physiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States. Global Change Biology, 2010, 16 (3): 990- 1002.
doi: 10.1111/j.1365-2486.2009.01966.x |
|
Ryan M G. Effects of climate change on plant respiration. Ecological Applications, 1991, 1 (2): 157- 167.
doi: 10.2307/1941808 |
|
Shi H, Li L, Eamus D, et al. Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes. Environmental Research Letters, 2014, 9 (10): 104002.
doi: 10.1088/1748-9326/9/10/104002 |
|
Sinsabaugh R L, Moorhead D L, Xu X, et al. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytologist, 2017, 214 (4): 1518- 1526.
doi: 10.1111/nph.14485 |
|
Sun Q, Meyer W S, Marschner P. Direct and carry-over effects of summer rainfall on ecosystem carbon uptake and water use efficiency in a semi-arid woodland. Agricultural and Forest Meteorology, 2018, 263, 15- 24.
doi: 10.1016/j.agrformet.2018.07.027 |
|
Tan Z H, Zhang Y P, Deng X B, et al. Interannual and seasonal variability of water use efficiency in a tropical rainforest: results from a 9 years eddy flux time series. Journal of Geophysical Research, 2015, 120 (2): 464- 479.
doi: 10.1002/2014JD022535 |
|
Tang Y K, Chen Y M, Wen X F, et al. Variation of carbon use efficiency over ten years in a subtropical coniferous plantation in southeast China. Ecological Engineering, 2016, 97, 196- 206.
doi: 10.1016/j.ecoleng.2016.09.009 |
|
Tarvainen L, Räntfors M, Wallin G. 2015. Seasonal and within-canopy variation in shoot-scale resource-use efficiency trade-offs in a Norway spruce stand. Plant, Cell and Environment, 38 (11): 2487–2496. | |
Thomas R T, Prentice I C, Graven H, et al. Increased light-use efficiency in northern terrestrial ecosystems indicated by CO2 and greening observations. Geophysical Research Letters, 2016, 43 (21): 11339- 11349. | |
Tong X J, Zhang J S, Meng P, et al. Ecosystem water use efficiency in a warm-temperate mixed plantation in the north China. Journal of Hydrology, 2014, 512, 221- 228.
doi: 10.1016/j.jhydrol.2014.02.042 |
|
Van Bodegom P M, Douma J C, Witte J P M, et al. Going beyond limitations of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches. Global Ecology and Biogeography, 2012, 21 (6): 625- 636.
doi: 10.1111/j.1466-8238.2011.00717.x |
|
Wang J, Zhang Q, Song J, et al. Nighttime warming enhances ecosystem carbon use efficiency in a temperate steppe. Functional Ecology, 2020, 34 (8): 1721- 1730.
doi: 10.1111/1365-2435.13579 |
|
Wutzler T, Lucas-Moffat A, Migliavacca M, et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences, 2018, 15 (16): 5015- 5030.
doi: 10.5194/bg-15-5015-2018 |
|
Xia J, McGuire A D, Lawrence D, et al. Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research: Biogeosciences, 2017, 122 (2): 430- 446.
doi: 10.1002/2016JG003384 |
|
Xu H, Zhang Z Q, Xiao J F, et al. Environmental and canopy stomatal control on ecosystem water use efficiency in a riparian poplar plantation. Agricultural and Forest Meteorology, 2020, 287, 107953.
doi: 10.1016/j.agrformet.2020.107953 |
|
Zhang M, Yu G R, Zhuang J, et al. Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agricultural and Forest Meteorology, 2011, 151 (7): 803- 816.
doi: 10.1016/j.agrformet.2011.01.011 |
|
Zhang Y L, Song C H, Sun G, et al. Understanding moisture stress on light use efficiency across terrestrial ecosystems based on global flux and remote-sensing data. Journal of Geophysical Research: Biogeosciences, 2015, 120 (10): 2053- 2066.
doi: 10.1002/2015JG003023 |
|
Zhang Y J, Yu G R, Yang J, et al. Climate-driven global changes in carbon use efficiency. Global Ecology and Biogeography, 2014, 23 (2): 144- 155.
doi: 10.1111/geb.12086 |
|
Zhang Y, Zhang Y J, Lian X, et al. Enhanced dominance of soil moisture stress on vegetation growth in Eurasian drylands. National Science Review, 2023, 10 (8): 108.
doi: 10.1093/nsr/nwad108 |
|
Zheng J, Han Y J, Sun N X, et al. Intra-annual carbon fluxes and resource use efficiency of subtropical urban forests: insights from Chongming Island ecological observatory. Frontiers in Forests and Global Change, 2023, 6, 1294249.
doi: 10.3389/ffgc.2023.1294249 |
|
Zhou J, Zhang Z Q, Sun G, et al. Water-use efficiency of a poplar plantation in Northern China. Journal of Forest Research, 2014, 19 (6): 483- 492.
doi: 10.1007/s10310-014-0436-3 |
|
Zhu J T, Zhang Y J, Jiang L. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agricultural and Forest Meteorology, 2017, 233, 242- 249.
doi: 10.1016/j.agrformet.2016.12.005 |
[1] | 谢静,张峰,周泽圆,于海群,韩艺,杨春欣,蒋薇,刘进祖,刘博恩,刘鹤. 北京城市公园人工林生态系统水分利用效率的季节变化[J]. 林业科学, 2024, 60(9): 12-17. |
[2] | 竹万宽,王志超,杜阿朋,许宇星. 广东湛江桉树人工林碳水通量季节格局及其环境生物控制[J]. 林业科学, 2024, 60(9): 18-32. |
[3] | 管崇帆,高翔,李志鹏,胡晓创,胡美均,张劲松,孟平,蔡金峰,孙守家. 辽西地区樟子松人工林生产力和水分利用效率对气候变化的响应及预测[J]. 林业科学, 2024, 60(7): 28-39. |
[4] | 王妍,冯金玲,吴小慧,黄蓝明,吴娟,陈宇,杨志坚. 施肥对闽楠幼苗光合碳固定的影响[J]. 林业科学, 2022, 58(5): 40-52. |
[5] | 邢军超,张一南,石焱,李金鑫,李敏,申宛娜,王黎,赵嘉平. 腐烂病菌、溃疡病菌侵染早期新疆杨叶片组织光合响应特征的比较[J]. 林业科学, 2021, 57(9): 121-129. |
[6] | 曹宇,巢林,安宇宁,吴德东,张学利,李红,刘艳艳. 科尔沁沙地刺榆水力结构特征对土壤水分环境的响应[J]. 林业科学, 2021, 57(7): 32-42. |
[7] | 高暝, 陈益存, 吴立文, 汪阳东. 山鸡椒水分及氮素利用效率性别特异性动态[J]. 林业科学, 2019, 55(4): 62-68. |
[8] | 邹杰, 丁建丽. 2000—2014年中亚地区主要植被类型水分利用效率特征[J]. 林业科学, 2019, 55(3): 175-182. |
[9] | 何春霞, 张劲松, 孟平, 胡心雨, 高峻. 太行山南麓3种常见灌木的水分利用特性[J]. 林业科学, 2018, 54(9): 137-146. |
[10] | 王琰, 刘勇, 李国雷, 胡嘉伟, 娄军山, 万芳芳. 容器类型及规格对油松容器苗底部渗灌耗水规律及苗木生长的影响[J]. 林业科学, 2016, 52(6): 10-17. |
[11] | 郎莹, 汪明. 春夏两季连翘光合作用的土壤水分阈值效应及生产力分级[J]. 林业科学, 2016, 52(2): 38-46. |
[12] | 米娜, 温学发, 蔡福, 王阳, 张玉书. 季节性干旱对千烟洲人工林水分利用效率的影响[J]. 林业科学, 2014, 50(12): 24-31. |
[13] | 高暝, 黄秦军, 丁昌俊, 苏晓华. 美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率[J]. 林业科学, 2013, 49(8): 51-57. |
[14] | 王磊, 曹福亮, 吴家胜. 分根区交替渗灌对银杏苗木生长及生理的影响[J]. 林业科学, 2013, 49(6): 52-59. |
[15] | 刘淑明, 孙佳乾, 邓振义, 魏典典, 张刚, 孙丙寅. 干旱胁迫对花椒不同品种根系生长及水分利用的影响[J]. 林业科学, 2013, 49(12): 30-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||