林业科学 ›› 2025, Vol. 61 ›› Issue (2): 74-84.doi: 10.11707/j.1001-7488.LYKX20240186
张佳佳1(),肖文发1,2,3,雷蕾1,2,3,杨鑫1,胡建文1,杨洪炳1,廖倚凌1,曾立雄1,2,3,*(
)
收稿日期:
2024-04-10
出版日期:
2025-02-25
发布日期:
2025-03-03
通讯作者:
曾立雄
E-mail:zhangjiajia@caf.ac.cn;zenglx@caf.ac.cn
基金资助:
Jiajia Zhang1(),Wenfa Xiao1,2,3,Lei Lei1,2,3,Xin Yang1,Jianwen Hu1,Hongbing Yang1,Yiling Liao1,Lixiong Zeng1,2,3,*(
)
Received:
2024-04-10
Online:
2025-02-25
Published:
2025-03-03
Contact:
Lixiong Zeng
E-mail:zhangjiajia@caf.ac.cn;zenglx@caf.ac.cn
摘要:
目的: 明确在绿肥生长和自然腐解阶段,柑橘树根际和非根际土壤有机碳组分变化及其主要影响因素,以期更好地理解绿肥覆盖对果园土壤碳组分的作用机制,为推广果园绿肥覆盖措施提供科学依据。方法: 以光叶苕子覆盖的柑橘园为研究对象,以清耕处理为对照,在光叶苕子生长和自然腐解季节,探索柑橘根际和非根际土颗粒有机碳(包含游离态颗粒有机碳和闭蓄态颗粒有机碳)及矿物结合有机碳的分布,并分析土壤有机碳组分变化与植物特征(柑橘细根碳氮磷含量、苕子地上和细根年碳氮磷输入量)和土壤因子(游离态颗粒有机氮、闭蓄态颗粒有机氮、矿物结合有机氮、全氮、全磷、黏粒含量及胞外酶活性)的关系。结果: 与清耕对比,在苕子生长和腐解季节,绿肥覆盖均显著(P<0.05)增加了根际土(34.13%、56.01%)和非根际土的闭蓄态颗粒有机碳含量(33.02%和64.23%);均显著(P<0.05)降低了根际土(?12.56%、?19.72%)和非根际土的矿物结合有机碳含量(?13.10%、?20.67%)。游离态颗粒有机碳含量在苕子生长季节的非根际土显著增加(78.77%,P<0.05),而根际土降低(?8.48%,P<0.05),但在苕子腐解季节相反,表现为非根际土降低(?18.66%,P<0.05)、根际土增加(18.62%,P<0.05)。冗余分析表明,在光叶苕子覆盖下的柑橘园,土壤的游离态颗粒有机碳和闭蓄态颗粒有机碳含量与苕子细根的年碳氮输入量、土壤闭蓄态颗粒有机氮含量、全氮含量及黏粒含量显著(P<0.05)正相关,土壤矿物结合有机氮含量与矿物结合有机碳含量显著(P<0.05)正相关。方差分析表明,光叶苕子覆盖提高了植物与土壤因子对土壤有机碳组分的共同作用(从18.3%增加到33.9%)。层次分割进一步确定,矿物结合有机氮是降低土壤矿物结合有机碳含量的主要因素,闭蓄态颗粒有机氮、苕子细根的年碳氮输入量、土壤黏粒含量是影响土壤游离态颗粒有机碳和闭蓄态颗粒有机碳积累的主要因素。结论: 光叶苕子覆盖通过其细根释放的碳氮及对土壤矿物结合有机氮含量的调控,促进了土壤颗粒有机碳积累,同时抵消土壤矿物结合有机碳的损失,最终实现了柑橘园土壤有机碳的净增加。绿肥覆盖带来的生态效益使其成为果园提升碳潜力的管理方式之一。
中图分类号:
张佳佳,肖文发,雷蕾,杨鑫,胡建文,杨洪炳,廖倚凌,曾立雄. 柑橘园覆盖光叶苕子促进土壤颗粒有机碳净积累[J]. 林业科学, 2025, 61(2): 74-84.
Jiajia Zhang,Wenfa Xiao,Lei Lei,Xin Yang,Jianwen Hu,Hongbing Yang,Yiling Liao,Lixiong Zeng. Smooth-Vetch Cover Promotes the Net Accumulation of Soil Particulate Organic Carbon of Citrus Orchards[J]. Scientia Silvae Sinicae, 2025, 61(2): 74-84.
表1
样地基本信息①"
项目Item | 苕子覆盖 Vetch cover | 清耕 Clean tillage |
柑橘年龄 Citrus age /a | 3 | 3 |
覆盖年限 Cover age /a | 2 | 0 |
苕子地上部分的年碳输入量 Vetch annual above-ground carbon input / (kg·hm?2a?1) | 1 472.67±107.24 | 0 |
苕子地上部分的年氮输入量 Vetch annual above-ground nitrogen content / (kg·hm?2a?1) | 93.31±10.76 | 0 |
苕子地上部分的年磷输入量 Vetch annual above-ground phosphorus content / (kg·hm?2a?1) | 9.99±1.20 | 0 |
苕子细根的年碳输入量 Vetch fine root annual carbon content / (kg·hm?2a?1) | 88.56±18.92 | 0 |
苕子细根的年氮输入量 Vetch fine root annual nitrogen content / (kg·hm?2a?1) | 4.78±1.36 | 0 |
苕子细根的年磷输入量 Vetch fine root annual phosphorus content / (kg·hm?2a?1) | 0.40±0.13 | 0 |
黏粒含量 Clay content (%) | 31.32a | 31.45a |
粉粒含量 Silt content (%) | 33.95a | 26.41a |
砂粒含量 Sand content (%) | 34.75a | 42.14a |
图1
清耕和苕子覆盖处理柑橘细根在苕子生长和腐解季节的养分变化 同一季节不同处理间不同大写字母表示差异显著(P<0.05),同一处理不同季节间不同小写字母表示差异显著(P<0.05)。*表示在处理、季节或处理与季节的交互作用下柑橘细根养分存在显著差异(P<0.05)。The different uppercase letters between treatments in the same season indicate significant differences (P<0.05), while the different lowercase letters between seasons within the same treatment indicate significant differences (P<0.05). * indicates that there are significant differences in citrus fine root nutrient content under the effects of treatment, season, or the interaction between treatment and season (P<0.05)."
图6
植物和土壤因子对土壤有机碳组分的影响 韦恩图分别为清耕和苕子覆盖下植物特征和土壤因子对土壤有机碳组分含量的方差分解,柱形图分别为清耕和苕子覆盖下植物特征和土壤因子变量对土壤有机碳组分含量的单独效应。fPON为游离态颗粒有机氮含量,oPON为闭蓄态颗粒有机氮含量,MAON为矿物结合有机氮含量,TP为土壤全磷含量,Clay为土壤黏粒含量,LAP为亮氨酸氨肽酶活性,Citrus root P为柑橘细根磷含量,Vetch root N为苕子年细根氮输入量,Vetch root C为苕子年细根碳输入量。The Venn diagrams illustrate the variance partitioning of plant characteristics and soil factors on soil organic carbon component contents under clear tillage and vetch cover, respectively. The bar charts demonstrate the individual effects of plant characteristics and soil factor variables on soil organic carbon component contents under clear tillage and vetch cover, respectively. fPON for free particulate organic nitrogen content, oPON for occluded particulate organic nitrogen content, MAON for mineral-associated organic nitrogen content, TP for soil total phosphorus content, Clay for soil clay content, LAP for leucine-amino-peptidase activity, Citrus root P for phosphorus content in citrus fine root, Vetch root N for annual nitrogen input from vetch fine root, and Vetch root C for annual carbon input from vetch fine root."
方林发, 谢 军, 孔 萌, 等. 豆科绿肥替代化学氮肥促进柑橘幼苗生长和氮素吸收. 植物营养与肥料学报, 2021, 27 (11): 1959- 1970.
doi: 10.11674/zwyf.2021182 |
|
Fang L F, Xie J, Kong M, et al. Green legume manure instead of chemical nitrogen fertilizer promoted the growth and nitrogen uptake of citrus seedlings. Journal of Plant Nutrition and Fertilizer, 2021, 27 (11): 1959- 1970.
doi: 10.11674/zwyf.2021182 |
|
韩 上, 耿明建, 宋 莉, 等. 三峡库区橘园不同豆科绿肥的生长及养分积累比较. 华中农业大学学报, 2014, 33 (1): 62- 66.
doi: 10.3969/j.issn.1000-2421.2014.01.012 |
|
Han S, Geng M J, Song L, et al. Comparison of growth and nutrient accumulation of different legume green manure in orange orchard of Three Gorges Reservoir Area. Journal of Huazhong Agricultural University, 2014, 33 (1): 62- 66.
doi: 10.3969/j.issn.1000-2421.2014.01.012 |
|
唐红琴, 李忠义, 韦彩会, 等. 橘园绿肥覆盖还田下的腐解及养分释放动态特征. 江苏农业科学, 2022, 50 (7): 221- 227. | |
Tang H Q, Li Z Y, Wei C H, et al. Dynamic characteristics of decomposition and nutrient release under green manure mulching in orange orchard. Jiangsu Agricultural Sciences, 2022, 50 (7): 221- 227. | |
吴强盛, 邹英宁 2014. 柑橘丛枝菌根的研究新进展. 江西农业大学学报, 36(2): 279−284. | |
Wu Q S, Zou Y N 2014. New progress in the study of citrus arbuscular mycorrhiza. Journal of Jiangxi Agricultural University, 36(2): 279−284. [in Chinese] | |
杨叶华 2020. 绿肥在柑橘园的生长发育和养分累积及其释放特征研究. 昆明: 西南大学. | |
Yang Y H 2020. Study on the characteristics of growth and development, nutrient accumulation and release of green manure in citrus orchard. Kunming: Southwest University. [in Chinese] | |
张睿博, 汪金松, 王全成, 等. 土壤颗粒态有机碳与矿物结合态有机碳对气候变暖响应的研究进展. 地理科学进展, 2023, 42 (12): 2471- 2484.
doi: 10.18306/dlkxjz.2023.12.015 |
|
Zhang R B, Wang J S, Wang Q C, et al. Responses of soil particulate and mineral-associated organic carbon to climate warming: a review. Progress in Geography, 2023, 42 (12): 2471- 2484.
doi: 10.18306/dlkxjz.2023.12.015 |
|
Angst G, Mueller K E, Kögel-knabner I, et al. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry, 2017, 132 (3): 307- 324.
doi: 10.1007/s10533-017-0304-2 |
|
Anugroho F, Kitou M, Nagumo F, et al. Growth, nitrogen fixation, and nutrient uptake of hairy vetch as a cover crop in a subtropical region. Weed Biology and Management, 2009, 9 (1): 63- 71.
doi: 10.1111/j.1445-6664.2008.00319.x |
|
Bansal S, Yin X H, Sykes V, et al. Soil aggregate‐associated organic carbon and nitrogen response to long‐term no‐till crop rotation, cover crop, and manure application. Soil Science Society of America journal, 2021, 85 (6): 2169- 2184.
doi: 10.1002/saj2.20329 |
|
Bu R Y, Han S, Cheng W L, et al. Deciphering the role of particulate organic matter in soil nitrogen transformation in rice-rapeseed and rice-wheat rotation systems. Applied Soil Ecology, 2024, 193, 105146.
doi: 10.1016/j.apsoil.2023.105146 |
|
Chen S D, Elrys A S, Yang W Y, et al. Soil recalcitrant but not labile organic nitrogen mineralization contributes to microbial nitrogen immobilization and plant nitrogen uptake. Global Change Biology, 2024, 30 (4): e17290.
doi: 10.1111/gcb.17290 |
|
Cotrufo M F, Haddix M L, Kroeger M E, et al. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 2022b, 168, 108648.
doi: 10.1016/j.soilbio.2022.108648 |
|
Cotrufo M F, Lavallee J M. 2022a. Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration. Advances in Agronomy, 172: 1−66. | |
Cotrufo M F, Ranalli M G, Haddix M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12, 989- 994.
doi: 10.1038/s41561-019-0484-6 |
|
Courtier-Murias D, Simpson A J, Marzadori C, et al. 2013. Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy. Agriculture, Ecosystems and Environment, 171: 9−18. | |
Cui J, Zhu Z K, Xu X L, et al. Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming. Soil Biology and Biochemistry, 2020, 142, 107720.
doi: 10.1016/j.soilbio.2020.107720 |
|
Diochon A, Gregorich E G, Kellman L, et al. Greater soil C inputs accelerate loss of C in cropping systems with low N input. Plant and Soil, 2016, 400 (1): 93- 105. | |
Fang L F, He X H, Zhang X L, et al. A small amount of nitrogen transfer from white clover to citrus seedling via common arbuscular mycorrhizal networks. Agronomy, 2020, 11 (1): 32.
doi: 10.3390/agronomy11010032 |
|
Fang Y Y, Singh B P, Collines D, et al. Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils. Soil Biology and Biochemistry, 2018, 126, 168- 178.
doi: 10.1016/j.soilbio.2018.09.003 |
|
Fang Y Y, Singh B P, Cowie A, et al. Balancing nutrient stoichiometry facilitates the fate of wheat residue‑carbon in physically defined soil organic matter fractions. Geoderma, 2019, 354, 113883.
doi: 10.1016/j.geoderma.2019.113883 |
|
German D P, Weintraub M N, Grandy A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 2011, 43 (7): 1387- 1397.
doi: 10.1016/j.soilbio.2011.03.017 |
|
Heim A, Schmidt M W I. Lignin is preserved in the fine silt fraction of an arable Luvisol. Organic Geochemistry, 2007, 38 (12): 2001- 2011.
doi: 10.1016/j.orggeochem.2007.08.009 |
|
Huang J S, Liu W X, Yang S, et al. Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. Soil Biology and Biochemistry, 2021, 160, 108322.
doi: 10.1016/j.soilbio.2021.108322 |
|
Jia Y F, Liu Z G, Zhou L, et al. Soil organic carbon sourcing variance in the rhizosphere vs. non-rhizosphere of two mycorrhizal tree species. Soil Biology and Biochemistry, 2023, 176, 108884.
doi: 10.1016/j.soilbio.2022.108884 |
|
Jian Z J, Ni Y Y, Lei L, et al. Phosphorus is the key soil indicator controlling productivity in planted Masson pine forests across subtropical China. The Science of the Total Environment, 2022, 822, 153525.
doi: 10.1016/j.scitotenv.2022.153525 |
|
Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26 (1): 261- 273.
doi: 10.1111/gcb.14859 |
|
Li J H, Cheng B H, Zhang R, et al. Nitrogen and phosphorus additions accelerate decomposition of slow carbon pool and lower total soil organic carbon pool in alpine meadows. Land Degradation & Development, 2021, 32 (4): 1761- 1772. | |
Li J W, Shangguan Z P, Deng L. Free particulate organic carbon plays critical roles in carbon accumulations during grassland succession since grazing exclusion. Soil and Tillage Research, 2022, 220, 105380.
doi: 10.1016/j.still.2022.105380 |
|
Li S Y, Gu X, Zhuang J, et al. Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility. Soil and Tillage Research, 2016, 155, 199- 206.
doi: 10.1016/j.still.2015.08.009 |
|
Mathew I, Shimelis H, Mutema M, et al. Crops for increasing soil organic carbon stocks–a global meta analysis. Geoderma, 2020, 367, 114230.
doi: 10.1016/j.geoderma.2020.114230 |
|
Mwafulirwa L D, Baggs E M, Russell J, et al. Combined effects of rhizodeposit C and crop residues on SOM priming, residue mineralization and N supply in soil. Soil Biology and Biochemistry, 2017, 113, 35- 44.
doi: 10.1016/j.soilbio.2017.05.026 |
|
Neupane A, Herndon E M, Whitman T, et al. Manganese effects on plant residue decomposition and carbon distribution in soil fractions depend on soil nitrogen availability. Soil Biology and Biochemistry, 2023, 178, 108964.
doi: 10.1016/j.soilbio.2023.108964 |
|
Panchal P, Preece C, Peñuelas J, et al. Soil carbon sequestration by root exudates. Trends in Plant Science, 2022, 27 (8): 749- 757.
doi: 10.1016/j.tplants.2022.04.009 |
|
Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34 (9): 1309- 1315.
doi: 10.1016/S0038-0717(02)00074-3 |
|
Six J, Callewaert P, Lenders S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America journal, 2002, 66 (6): 1981- 1987.
doi: 10.2136/sssaj2002.1981 |
|
Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 2014, 68, 4- 9.
doi: 10.1016/j.soilbio.2013.06.014 |
|
Sokol N W, Whalen E D, Jilling A, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: a trait‐based perspective. Functional Ecology, 2022, 36 (6): 1411- 1429.
doi: 10.1111/1365-2435.14040 |
|
St. Luce M, Whalen J K, Ziadi N, et al. Labile organic nitrogen transformations in clay and sandy-loam soils amended with 15N-labelled faba bean and wheat residues. Soil Biology and Biochemistry, 2014, 68, 208- 218.
doi: 10.1016/j.soilbio.2013.09.033 |
|
Sun T T, Zhou J, Fu Y, et al. Soil nitrogen availability mediates the positive effects of intercropping on soil organic carbon at global scales. Soil and Tillage Research, 2024, 239, 106063.
doi: 10.1016/j.still.2024.106063 |
|
Sun Y, Zang H D, Splettstößer T, et al. Plant intraspecific competition and growth stage alter carbon and nitrogen mineralization in the rhizosphere. Plant Cell & Environment, 2021, 44 (4): 1231- 1242. | |
Villarino S H, Pinto P, Jackson R B, et al. Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions. Science Advances, 2021, 7 (16): eabd3176.
doi: 10.1126/sciadv.abd3176 |
|
Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications: A Publication of the Ecological Society of America, 2010, 20 (1): 5- 15.
doi: 10.1890/08-0127.1 |
|
Wang B R, Huang Y M, Li N, et al. Initial soil formation by biocrusts: nitrogen demand and clay protection control microbial necromass accrual and recycling. Soil Biology and Biochemistry, 2022a, 167, 108607.
doi: 10.1016/j.soilbio.2022.108607 |
|
Wang C Q, Kuzyakov Y. Rhizosphere engineering for soil carbon sequestration. Trends in Plant Science, 2024a, 29 (4): 447- 468.
doi: 10.1016/j.tplants.2023.09.015 |
|
Wang N, Li L, Gou M M, et al. Living grass mulching improves soil enzyme activities through enhanced available nutrients in citrus orchards in subtropical China. Frontiers in Plant Science, 2022b, 13, 1053009.
doi: 10.3389/fpls.2022.1053009 |
|
Wang X, Wang C, Fan X L, et al. Mineral composition controls the stabilization of microbially derived carbon and nitrogen in soils: insights from an isotope tracing model. Global Change Biology, 2024b, 30 (1): e17156.
doi: 10.1111/gcb.17156 |
|
Witzgall K, Vidal A, Schubert D I, et al. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12: 4115. | |
Wooliver R, Jagadamma S. 2023. Response of soil organic carbon fractions to cover cropping: a meta-analysis of agroecosystems. Agriculture, Ecosystems & Environment, 351: 108497. | |
Wu Q S, Zhang Y C, Zhang Z Z, et al. Underground communication of root hormones by common mycorrhizal network between trifoliate orange and white clover. Archives of Agronomy and Soil Science, 2017, 63 (9): 1187- 1197.
doi: 10.1080/03650340.2016.1276570 |
|
Xiang Y Z, Li Y, Liu Y, et al. Factors shaping soil organic carbon stocks in grass covered orchards across China: a meta-analysis. The Science of the Total Environment, 2022, 807 (Part2): 150632. | |
Xiao L M, Zhang W, Hu P L, et al. The formation of large macroaggregates induces soil organic carbon sequestration in short-term cropland restoration in a typical Karst area. The Science of the Total Environment, 2021, 801, 149588.
doi: 10.1016/j.scitotenv.2021.149588 |
|
Xu H D, Zhu B, Wei X M, et al. Root functional traits mediate rhizosphere soil carbon stability in a subtropical forest. Soil Biology and Biochemistry, 2021, 162, 108431.
doi: 10.1016/j.soilbio.2021.108431 |
|
Yang X, Wang B R, Fakher A, et al. Contribution of roots to soil organic carbon: from growth to decomposition experiment. CATENA, 2023, 231, 107317.
doi: 10.1016/j.catena.2023.107317 |
|
Zhang F T, Chen X, Yao S H, et al. Responses of soil mineral-associated and particulate organic carbon to carbon input: a meta-analysis. The Science of the Total Environment, 2022, 829, 154626.
doi: 10.1016/j.scitotenv.2022.154626 |
|
Zhang J J, Xiao W F, Zeng L X, et al. The life state of smooth vetch regulates the seasonal dynamics of microbial nutrient limitations in citrus orchards. Land Degradation & Development, 2024, 35 (8): 2771- 2780. | |
Zheng W, Gong Q L, Lv F L, et al. Tree-scale spatial responses of extracellular enzyme activities and stoichiometry to different types of fertilization and cover crop in an apple orchard. European Journal of Soil Biology, 2020, 99, 103207.
doi: 10.1016/j.ejsobi.2020.103207 |
|
Zhu S Q, M. Sainju U M, Zhang S H, et al. Cover cropping promotes soil carbon sequestration by enhancing microaggregate-protected and mineral-associated carbon. The Science of the Total Environment, 2024, 908, 168330.
doi: 10.1016/j.scitotenv.2023.168330 |
[1] | 高岚, 刘芸, 熊兴政, 邬静淳, 王萌, 袁贵琼, 欧阳, 任立. 引种植物水桦与乡土植物桑树对三峡库区消落带水淹的响应[J]. 林业科学, 2018, 54(9): 147-156. |
[2] | 陈锦平, 曾成城, 马文超, 刘媛, 贾中民, 魏虹, 刘永贤. 水淹和非水淹条件下秋华柳扦插苗镉积累特征比较[J]. 林业科学, 2017, 53(4): 166-174. |
[3] | 程瑞梅, 刘泽彬, 肖文发, 王娜, 王晓荣, 沈雅飞. 三峡库区典型消落带土壤化学性质变化[J]. 林业科学, 2017, 53(2): 19-25. |
[4] | 马骏, 马朋, 李昌晓, 彭月, 魏虹. 基于土地利用的三峡库区(重庆段)生态系统服务价值时空变化[J]. 林业科学, 2014, 50(5): 17-26. |
[5] | 白林利, 李昌晓. 水淹对水杉苗木耐旱性的影响[J]. 林业科学, 2014, 50(11): 166-174. |
[6] | 葛晓改, 曾立雄, 黄志霖, 肖文发, 谭本旺, 周本智. 土壤温度和水分含量对三峡库区马尾松林凋落物叶分解的影响[J]. 林业科学, 2013, 49(9): 153-157. |
[7] | 郭泉水;康义;洪明;金江群;朱妮妮;聂必红;王佐庆. 三峡库区消落带陆生植被对首次水陆生境变化的响应[J]. , 2013, 49(5): 1-9. |
[8] | 程瑞梅;王瑞丽;刘泽彬;封晓辉;王晓荣;肖文发. 三峡库区栲属群落主要乔木种群的种间联结性[J]. , 2013, 49(5): 36-42. |
[9] | 杨予静;李昌晓;张晔;崔云风. 水淹-干旱交替胁迫对湿地松幼苗盆栽土壤营养元素含量的影响[J]. , 2013, 49(2): 61-71. |
[10] | 王朝英, 李昌晓, 张晔. 水淹-干旱胁迫对南川柳苗木生长及生理特性的影响[J]. 林业科学, 2013, 49(12): 164-170. |
[11] | 张建军;任荣荣;朱金兆;宋闯;刘杰锋;傅建强;胡海波;王建修;李慧敏;徐佳佳. 长江三峡水库消落带桑树耐水淹试验[J]. 林业科学, 2012, 48(5): 154-158. |
[12] | 郭泉水;康义;赵玉娟;洪明;孔倩倩;聂必红. 三峡库区消落带土壤氮磷钾、pH值和有机质变化[J]. 林业科学, 2012, 48(3): 7-10. |
[13] | 黄小辉;刘芸;李佳杏;熊兴政;尹小华;陈阳;秦俭;黄先智;杜英武. 水分胁迫对三峡库区消落带桑树幼苗生理特性的影响[J]. 林业科学, 2012, 48(12): 122-127. |
[14] | 雷明;李昌晓;陈伟;魏虹. 三峡水库岸坡系统不同用地类型对土壤酶活性和土壤化学性质的影响[J]. 林业科学, 2012, 48(11): 15-22. |
[15] | 吴昌广;周志翔;肖文发;王鹏程;汪涛;黄子杰. 基于MODISNDVI的三峡库区植被覆盖度动态监测[J]. 林业科学, 2012, 48(1): 22-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||