林业科学 ›› 2025, Vol. 61 ›› Issue (2): 204-218.doi: 10.11707/j.1001-7488.LYKX20220849
• 综合评述 • 上一篇
收稿日期:
2022-11-30
出版日期:
2025-02-25
发布日期:
2025-03-03
通讯作者:
殷亚方
E-mail:yafang@caf.ac.cn
基金资助:
Juan Guo,Lichao Jiao,Tuo He,Lingyu Ma,Xiaomei Jiang,Yafang Yin*()
Received:
2022-11-30
Online:
2025-02-25
Published:
2025-03-03
Contact:
Yafang Yin
E-mail:yafang@caf.ac.cn
摘要:
木材解剖学是研究木材(次生木质部)中各类细胞形态特征、排列、比量、结构和功能的一门科学。在木材解剖学框架内,开展木材构造特征定量化研究,实现木材解剖信息的定量提取、挖掘、整合与应用,科学构建木材构造特征与树种生理功能、气候环境、木材性质和加工工艺等之间的相互关系,可进一步推动木材学、林学、植物学、古生物学、古气候学、考古学和物候学等学科的发展。当前,在系统科学的时代背景下,梳理木材定量解剖研究的发展脉络,厘清木材构造特征的结构性和整体性,从系统论视角探讨木材定量解剖研究的涌现性质,有利于促进木材解剖学的跨学科交叉融合,开创木材解剖学发展新格局。本研究首先介绍木材解剖学的重要发展阶段,针对木材构造特征的共性和多样性,从样品制备、信息采集和数据分析等方面总结木材定量解剖研究的主要方法,然后分别从木材构造特征与树木系统进化、木材构造特征与气候环境变化、木材构造特征与木材性质及加工利用关系3方面归纳近10年来木材定量解剖研究取得的最新进展,最后针对当前存在的问题与不足,提出未来发展展望:1) 木材定量解剖研究方法的持续性革新迭代,推动木材定量解剖高通量测试与分析平台的研发,为木材解剖学的广泛应用提供基础;2) 木材信息资源及其共享体系的全球化构建完善,增强木材定量解剖数据的可靠性和共享性,为发展基于数据驱动的木材科学研究新范式提供重要基础;3) 木材定量解剖研究体系的多学科交叉融合,从底层逻辑和层级架构视角比较木材解剖学与植物解剖学、生态学、木材加工利用等领域的关联与异同,促进多学科融合创新发展。通过进一步开展木材定量解剖研究,加强木材解剖学的跨学科交叉融合,从木材解剖学角度推动基于数据驱动的木材科学研究新范式的构建与发展,能够为林木培育、森林经营、树木分类、森林碳汇、气候变化、木材生产及可持续利用等研究提供理论基础和科学依据。
中图分类号:
郭娟,焦立超,何拓,马灵玉,姜笑梅,殷亚方. 木材定量解剖研究新进展[J]. 林业科学, 2025, 61(2): 204-218.
Juan Guo,Lichao Jiao,Tuo He,Lingyu Ma,Xiaomei Jiang,Yafang Yin. New Research Progress on Quantitative Wood Anatomy[J]. Scientia Silvae Sinicae, 2025, 61(2): 204-218.
表1
木材构造特征的定量测试分析方法①"
主要构造特征 Main anatomical traits | 定义 Definition | 定量测试分析方法 Methods for quantitative analysis | 推荐样本量 Recommended sampling number | 参考文献 Reference |
组织比量(轴向管胞、木纤维、导管、木射线、轴向薄壁组织) Percentages of tracheids, fibers, vessels, ray parenchyma, axial parenchyma | 一定区域内,不同类型组织的面积占比 Tissue area as a percentage of measured transverse section area | 尺寸建议不低于5 mm生长锥等样品;LM观测 At least the 5 mm diameter core is suggested; LM technique | ≥20个视野 At least 20 fields of appropriate size | — |
细胞长度(轴向管胞、纤维细胞、导管分子) Tracheid length, fibre length, vessel element length | 完整细胞从一端到另一端的长度,包含细胞锐端 Measure the whole length of each cell from one tail end to the other | 组织离析;LM观测 In a maceration; LM technique | ≥25 | |
胞壁厚度(轴向管胞、纤维细胞、导管分子) Wall thickness of tracheid, fibre, vessel element | 横切面上细胞双壁厚度 Total wall thickness measured as the double wall between 2 adjacent tracheids, fibers or vessels | 横切面显微切片;区分早晚材;区分径向壁和弦向壁,建议测量径向壁;LM观测 Transverse sections; Measurement in earlywood and latewood respectively; Measured radially or tangentially, the radial measurement is suggested; LM technique | ≥50 | |
胞腔直径(纤维细胞、导管分子) Fiber lumen diameter, arithmic vessel diameter | 细胞腔等效圆的算术直径 Fiber lumen diameter= arithmic diameter corresponding to equivalent circle diameter of fiber lumina; Arithmic vessel diameter= the simple average of the equivalent circle diameters | 横切面显微切片;区分早晚材;LM观测Transverse sections; Measurement in earlywood and latewood respectively; LM technique | ≥100 | |
导管分布密度 Vessels frequency | 每平方毫米管孔数 Vessels per square millimetre | 横切面显微切片;环孔材不计;LM观测Transverse sections; Not count vessel frequency for ring-porous woods; LM technique | ≥5个视野 Count all the vessels in at least five fields of appropriate size (depending on vessel diameter and distribution) | |
导管腔弦向直径 Tangential diameter of vessel lumina | 导管开口的最大距离,不包含壁厚 The tangential diameter of the vessel lumina, excluding the wall, is measured at the widest part of the opening | 横切面显微切片;对环孔材和具有2类导管尺寸的散孔材,仅测量大导管;LM观测 Transverse sections; In ring-porous woods and woods with ‘vessels of two distinct diameter classes, wood not ring-porous’, only measure and record the larger size class; LM technique | ≥25 | |
复合导管比例 Vessel multiple fraction | 复合导管数量占导管总数 比例 Ratio of grouped vessels to total number of vessels | 横切面显微切片;LM观测 Transverse sections; LM technique | ≥50 | |
射线密度 Ray density | 每毫米射线数 Rays per millmetre | 尺寸建议不小于5 mm生长锥等样品;弦切面上沿一条垂直于射线高度的直线测定;LM观测 At least the 5 mm diameter core; The number of rays per linear unit is best determined from a tangential section along a line perpendicular to the ray’s axis; LM technique | 10 | |
射线高度 Ray height | 组成射线高度的细胞数量 Number of cells | 弦切面测量;区分单列射线与纺锤型射线;纺锤型射线应包括两端延伸的单列部分;LM观测 Tangential sections; All features referring to ray height exclude rays containing intercellular canals (“fusiform rays”) unless otherwise specified; Rays that contain intercellular canals are called fusiform. Ensure that the entire ray is measured, including the uniseriate extensions at both ends of the ray; LM technique | ≥25 | |
管间纹孔直径 Intervessel pit size | 导管间纹孔的直径 The diameter of pits between vessel elements | 弦切面;观测导管重叠端壁上管间纹孔式;一般测定水平直径;LM观测 Surface views of intervessel pits are easiest to find in tangential sections; Intervessel pit size must be observed in overlapping end wall portions of vessel elements in a single vessel; The most widely used convention for determining pit size is to measure horizontal pit diameter; LM technique | 10 | |
管间纹孔膜厚度 Intervessel pit membrane thickness | 导管间纹孔膜最厚处的厚度 Intervessel pit membrane thickness measured at its thickest point | TEM观测 TEM technique | ≥25 | |
导管纹孔口面积 Pit aperture surface area | 导管纹孔口所占据的面积 Pit aperture surface area | 测量不同导管的纹孔;SEM测量 Pits from different vessels; SEM technique | ≥50 | |
纹孔口直径 Diameter of outer pit aperture | 纹孔最大开口处测量的纹孔口直径 Measure at the widest part of the opening | SEM测量 SEM technique | ≥50 | |
纹孔室深度 Pit chamber depth | 纹孔膜至纹孔口内侧的距离 Distance from the pit membrane to the inner pit aperture | TEM测量 TEM technique | ≥25 |
表2
木材构造特征的信息采集方法①"
手段 Techniques | 优点 Advantages | 缺点 Limitations |
iWood | 宏观构造;最大图像采集分辨率为4 000像素×3 000像素;成像视场为6.35 mm×6.35 mm;光源配置有LED和UV;适用于木材表面图像的高清、快速采集 Macrostructure; The maximum image acquisition resolution is | 局限于表面分析 Structural features of surfaces can be visualized |
Xylophone | 宏观构造;视野 Macrostructure; Field of view is | 局限于表面分析 Structural features of surfaces can be visualized |
LM | 微观构造;放大倍数×10~×1 000;分辨率极限200 nm Microstructure; The magnification of the microscope can range from ×10 to ×1 000; The best resolution for a light microscope is 200 nm | 需要样品制备,耗时耗力;侧重2D图像采集,3D检测需要连续切片,结合逐层扫描显微图像合成系统 Extensive sample preparation; 2D image of wood, 3D analysis of wood structure is quite laborious and time-consuming as it requires serial sectioning |
RLM | 微观构造;适用于表面抛光不透明样品 Microstructure; RLM does not require sectioning and can be used on opaque wood samples | 无法用于表面涂膜处理的样品;较难适用于腐朽、考古样品 RLM cannot be applied on artefacts whose surfaces are generally treated and coated because this hinders the identification of anatomical structures; RLM cannot be used on deteriorated old sample |
3D-RLM | 微观构造,无损检测;对样品表面粗糙度无要求,适用于木材、木制品及木炭样品;放大倍数×10~× Macrostructure; The advantages of using the 3D-RLM technology are that fresh fracture planes of wood and charcoal can be directly observed under the microscope without further preparation or surface treatment; The 3D-technique with integrated polarized light illumination creates high-contrast images of uneven and black charcoal surfaces; Magnification up to | 局限于表面分析 Structural features of surfaces can be visualized |
CLSM | 微观构造;横向极限分辨率0.2 μm,轴向极限分辨率0.6 μm Microstructure; The best resolution that can be obtained is ~0.2 μm laterally and ~0.6 μm axially, though in practice these values are not always achieved | 侧重2D图像采集,3D图像需通过2D图像叠加模块实现 A “z-stack” of the images can be compiled to form a composite 3D image of a thick sample |
全自动数字玻片扫描 系统 | 微观构造;放大倍数20×,可高达43×或86×,分辨率0.087 μm/像素;一次可自动扫描高达12张切片;提供荧光扫描通道 Microstructure; Magnification of 20×, up to 43× or 86×; Resolution of 0.087 μm/pixel; Up to 12 slices can be automatically scanned at once; Selection of fluorescence scanning channel | 设备昂贵 Expensive equipment |
μCT | 微观构造,三维检测;无损检测 Non-destructive, non-invasive technique that can be utilized to construct virtual 3D images of wood microstructure | 体素与样品检测空间有关,如体素1 μm时,样品需为亚毫米尺寸 The resolution is inversely proportional to sample width and can be up to 1 μm; The resolution of 1 μm is only possible with submillimeter sample size |
LATscan | 微观构造,二维/三维检测;自动化检测;1 min内能采集上百张图像;利用木质素等自发荧光现象,可实现细胞构造与组分化学的分析整合 Microstructure; Generate high-quality 2D images and 3D reconstructions of wood plant samples; Automatic imaging during ablation; LATscan is a high-throughput imaging system that yields hundreds of images per minute; LATscan is a powerful technology to generate morphological and anatomical features while revealing differential fluorescent signals corresponding to cellulosic, lignified, and suberized cell walls | 破坏性检测;激光烧灼可能产生热伪影;成本贵 Destructive technique; Material removal via laser ablation probably lends itself to thermal effects. The thermal effect would only get completely removed in the low-picosecond range and femtosecond pulsed range with a similar pulse energy. There could also be additional thermal effects due to thick samples as the outer edges of the sample would fall on the edges or outside the Gaussian beam profile along the y-direction; It may not be cost-effective compared with other traditional techniques (e.g. light microscopy) |
SEM | 超微构造;分辨率极限20 nm;聚焦深度高,比LM高300倍 Ultrastructure; SEM resolution up to 20 nm; High depth of focus, field depth is 300 times higher than that of LM | 需要样品制备,耗时耗力;局限于表面分析 For SEM studies, an appropriate size of cube of wood is cut, ensuring that surfaces have a clean cut to make sure no fractures or cutting lines are seen in the final image. The cubes are finally mounted on sample stubs and then coated with gold in a high-vacuum evaporating unit; Examines only exposed surfaces of a sample |
AFM | 超微构造;x-y轴的分辨率极限10 nm,z轴的分辨率<0.1 nm;探针尖端可多款选配,实现木材细胞壁力学、化学或者热性能的原位分析 Ultrastructure; Ever decreasing AFM probe tip size (<10 nm) produce topographical images with high x-y resolution (of tens of nanometers) and ultrahigh z-resolution (<0.1 nm); The real beauty with AFM lies in the possibility to modify the probe tip to simultaneously image wood cell wall ultrastructure and measure cell wall properties (mechanical, chemical or thermal), enabling direct elucidation of underlying structure-property relations | 需要样品制备,耗时耗力;局限于表面分析 Preparation of smooth samples may require ultra-microtoming with a diamond knife, although thicker samples can be used; Examines only exposed surfaces of a sample |
TEM | 超微构造;放大倍数×35~×700 000,分辨率极限0.5 ? Ultrastructure; Modern TEMs have a resolution of over 0.5 ? and a magnification ratio ranging from ×35 to ×700 000 | 需要样品制备,制样难度高,耗时耗力;2D图像采集 Extensive sample preparation; 2D image of wood |
表3
适用于图像信息的木材定量解剖分析软件①"
手段 Techniques | 木材构造特征 Wood anatomical traits | 对象筛选 策略 Cell filtering | 其他软件特征 Some other features | 软件许可 License | ||
细胞尺寸 Cell size | 细胞壁 厚度 Cell wall thickness | 生长轮 Tree ring | ||||
AutoCellRow | 可分析 Yes | 自动分析 Automatic | 自动识别 Automatic | 尺寸、形状 Size, shape | 多种图像格式的兼容输入能力;数据自动输出;基于Python语言开发的软件,具有较高的可扩展性 tiff., jpg., bmp., png. formats; Developed in Python programming language | 免费 Free |
AxioVision | 可分析 Yes | 手动分析 Manual | 无法识别 No | 尺寸、形状 Size, shape | 自动化工作流模块;宏开发工具;适用于显微图像 Automating workflow and macro development tools; Microscope control | 商业 Commercial |
CellProfilter | 可分析 Yes | 手动分析 Manual | 无法识别 No | 尺寸、颜色、形状 Size, color, shape | 批量分析超1 000张图像集合;自动化工作流模块 Batch analyzing large sets (> Automating workflow using modules | 免费 Free |
ImageJ | 可分析 Yes | 手动分析 Manual | 无法识别 No | 尺寸、形状 Size, shape | 拥有大量插件;宏开发工具 Large collection of plugins by community; Macro development tools | 免费 Free |
Image-Pro Plus | 可分析 Yes | 手动分析 Manual | 无法识别 No | 尺寸、颜色、形状 Size, color, shape | 较强的图像处理与分析能力;宏开发工具 Powerful image processing and analysis functions; Macro development tools | 商业 Commercial |
Image-warp | 可分析 Yes | 自动分析 Automatic | 无法识别 No | 尺寸、形状 Size, shape | 自动的图像处理与分析能力 Automatic image processing morphometric method | 商业 Commercial |
NIE-Elements | 可分析 Yes | 手动分析 Manual | 无法识别 No | 尺寸、形状 Size, shape | 宏开发工具;适用于显微图像 Macro development tools; Microscope control | 商业 Commercial |
ROXAS | 可分析 Yes | 自动分析 automatic | 自动识别 automatic | 尺寸、颜色、形状、背景 Size, color, shape, context | 能分析细胞数高达1 000 000的大图像;数据自动输出;图像自动处理;可批量处理;在线库和定制配置 Analyzing large images (up to Automatic image processing; Batch processing options; Online library and customization of tailored configurations | 免费,但需要商业软件Image-Pro Plus (v6.1 或更高版本) Free, but requires commercial Image-Pro Plus (v6.1 or higher) |
WinCELL | 可分析 Yes | 自动分析 Automatic | 手动识别 Manual | 尺寸、颜色、形状 Size, color, shape | 数据自动输出;可批量处理;定制配置;区分显微图像和扫描图像录入选择 Large set of anatomical output parameters; Batch processing options; Customizing tailored configurations; Microscope and scanner control | 商业 Commercial |
曹 宇, 巢 林, 安宇宁, 等. 科尔沁沙地刺榆水力结构特征对土壤水分环境的响应. 林业科学, 2021, 57 (7): 32- 42. | |
Cao Y, Chao L, An Y N, et al. Response of hydraulic architecture of Hemiptelea davidii to soil water conditions in Horqin sandy land. Scientia Silvae Sinicae, 2021, 57 (7): 32- 42. | |
何 拓. 2019. 基于机器学习的黄檀属与紫檀属木材识别方法研究. 北京: 中国林业科学研究院. | |
He T. 2019. Study on wood identification methods for Dalbergia and Pterocarpus species in combination with machine learning. Beijing: Chinese Academy of Forestry. [in Chinese] | |
何 拓, 刘守佳, 陆 杨, 等. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统. 林业科学, 2021a, 57 (9): 152- 159. | |
He T, Liu S J, Lu Y, et al. iWood: an automated wood identification system for endangered and precious tree species using convolutional neural networks. Scientia Silvae Sinicae, 2021a, 57 (9): 152- 159. | |
何 拓, 焦立超, 郭 娟, 等. 木材信息学: 发展、应用与展望. 木材科学与技术, 2021b, 35 (4): 15- 24. | |
He T, Jiao L C, Guo J, et al. Wood informatics: history of development, application, and prospective trend. Chinese Journal of Wood Science and Technology, 2021b, 35 (4): 15- 24. | |
黄荣凤. 木材塑性变形的湿热固定技术及机理研究进展. 林业科学, 2022, 58 (2): 206- 216. | |
Huang R F. Advances in wood plastic deformation fixation by hygro-thermal treatments and the fixation mechanisms. Scientia Silvae Sinicae, 2022, 58 (2): 206- 216. | |
梁永超, 万 辉, 邱 坚, 等. 9个桉树无性系木纤维径向变异研究. 西部林业科学, 2024, 53 (1): 66- 71, 81. | |
Liang Y C, Wan H, Qiu J, et al. Radial variation analysis of fibers on nine Eucalyptus clones. Journal of West China Forestry Science, 2024, 53 (1): 66- 71, 81. | |
李 坚. 2014. 木材科学. 3版. 北京: 科学出版社. | |
Li J. 2014. Wood science. 3rd ed. Beijing: Science Press. [in Chinese] | |
李 姗, 李玉军, 张 亚, 等. 基于具缘纹孔膜特征的木质部栓塞机制研究进展. 林业科学, 2022, 58 (2): 196- 205. | |
Li S, Li Y J, Zhang Y, et al. Research progress in mechanism of xylem embolism based on characteristics of bordered pit membrane. Scientia Silvae Sinicae, 2022, 58 (2): 196- 205. | |
李茜然, 勇 璐, 潘 彪, 等. 水青树特殊管胞的分布位置及其形态特征的研究. 植物研究, 2022, 42 (6): 939- 945. | |
Li X R, Yong L, Pan B, et al. The distribution location and morphological characteristics of special tracheids in Tetracentron sinense. Bulletin of Botanical Research, 2022, 42 (6): 939- 945. | |
梁 涤, 陈松洋, 李有贵, 等. 普洱茶树与中华木兰木质部解剖构造与进化关系分析. 木材科学与技术, 2022, 36 (6): 47- 53. | |
Liang D, Chen S Y, Li Y G, et al. Comparative anatomy and evolutionary relationship of xylem of Camellia sinensis var. assamica and Magnolia miocenica. Chinese Journal of Wood Science & Technology, 2022, 36 (6): 47- 53. | |
刘 祎. 2017. 落叶松人工林木材材性及固碳特征对其影响因素的响应. 哈尔滨: 东北林业大学. | |
Liu Y. 2017. Response of wood properties and carbon sequestration characteristics to factors affecting formation of larch plantation. Harbin: Northeast Forestry University. [in Chinese] | |
吕建雄, 赵荣军, 刘盛全, 等. 2024. 木材材质改良的物理与化学基础. 北京: 科学出版社. | |
Lü J X, Zhao R J, Liu S Q, et al. 2024. Physical and chemical basis of wood quality improvement. Beijing: Science Press. [in Chinese] | |
任素红, 冯启明, 吕建雄, 等. 杉木无性系管胞形态及其拉伸性能的研究. 木材科学与技术, 2022, 35 (5): 12- 17. | |
Ren S H, Feng Q M, Lü J X, et al. Study on morphology and tensile properties of wood tracheid of Chinese fir clones. Chinese Journal of Wood Science & Technology, 2022, 35 (5): 12- 17. | |
王 东, 林兰英, 傅 峰. 木材多尺度结构差异对其破坏影响的研究进展. 林业科学, 2020, 56 (8): 141- 147. | |
Wang D, Lin L Y, Fu F. The effects of multiscale structure differences on wood fracture: a review. Scientia Silvae Sinicae, 2020, 56 (8): 141- 147. | |
王 静, 王 杰, 郭 娟, 等. 基于聚焦离子束-扫描电子显微技术的雪松木质部具缘纹孔三维重构. 电子显微学报, 2022, 41 (1): 66- 71. | |
Wang J, Wang J, Guo J, et al. The three-dimensional structure of bordered pit in xylem of Cedrus deodara base on focused ion beam scanning electron microscopy. Journal of Chinese Electron Microscopy Society, 2022, 41 (1): 66- 71. | |
吴义强. 木材科学与技术研究新进展. 中南林业科技大学学报, 2021, 41 (1): 1- 28. | |
Wu Y Q. Newly advances in wood science and technology. Journal of Central South University of Forestry & Technology, 2021, 41 (1): 1- 28. | |
席靖宇, 王宇轩, 衡利辰, 等. 基于计算机视觉的针叶材木射线特征提取方法. 林业工程学报, 2023, 8 (3): 132- 140. | |
Xi J Y, Wang Y X, Heng L C, et al. Wood ray feature extraction method of softwood based on computer vision. Journal of Forestry Engineering, 2023, 8 (3): 132- 140. | |
解 庆, 刘志红. 桦木科8树种木材解剖特征比较. 东北林业大学学报, 2021, 49 (11): 100- 104. | |
Xie Q, Liu Z H. Comparison on wood anatomy of eight species (Betulaceae). Journal of Northeast Forestry University, 2021, 49 (11): 100- 104. | |
谢雪霞, 刘 波, 孙华林, 等. 我国四种珍贵阔叶人工林木材的机械加工性能评价. 木材工业, 2014, 28 (5): 36- 40. | |
Xie X X, Liu B, Sun H L, et al. Evaluation on wood machining properties of four valuable hardwood species from forest plantations in China. China Wood Industry, 2014, 28 (5): 36- 40. | |
殷方宇, 都亚敏, 李 珠, 等. 楸木不同类型组织的湿胀-干缩行为. 林业科学, 2024, 60 (7): 105- 116. | |
Yin F Y, Du Y M, Li Z, et al. Shrinkage and swelling behavior of different types of tissues in Catalpa bungei wood. Scientia Silvae Sinicae, 2024, 60 (7): 105- 116. | |
周朝彬. 2019. 古尔班通古特沙漠梭梭木质部生态解剖与射线功能研究. 雅安: 四川农业大学. | |
Zhou C B. 2019. Study on the ecological anatomy and ray function of the Haloxylon ammodendron xylem in the Gurbantunggut desert, China. Ya’an: Sichuan Agricultural University. [in Chinese] | |
Alia-Syahirah Y, Paridah M T, Hamdan H, et al. Effects of anatomical characteristics and wood density on surface roughness and their relation to surface wettability of hardwood. Journal of Tropical Forest Science, 2019, 31 (3): 269- 277.
doi: 10.26525/jtfs2019.31.3.269 |
|
Amoah M, Inyong S. Comparison of some physical, mechanical and anatomical properties of smallholder plantation teak (Tectona grandis Linn. f. ) from dry and wet localities of Ghana. Journal of the Indian Academy of Wood Science, 2019, 16 (2): 125- 138.
doi: 10.1007/s13196-019-00248-7 |
|
Arzac A, López-Cepero J M, Babushkina E A, et al. Applying methods of hard tissues preparation for wood anatomy: imaging polished samples embedded in polymethylmethacrylate. Dendrochronologia, 2018, 51, 76- 81.
doi: 10.1016/j.dendro.2018.08.005 |
|
Baas P, Ewers F W, Davis S D, et al. 2004. Evolution of xylem physiology//The evolution of plant physiology from whole plants to ecosystems. Amsterdam: Elsevier, 273−295. | |
Babushkina E A, Belokopytova L V, Zhirnova D F, et al. Siberian spruce tree ring anatomy: imprint of development processes and their high-temporal environmental regulation. Dendrochronologia, 2019, 53, 114- 124.
doi: 10.1016/j.dendro.2018.12.003 |
|
Bailey I W, Tupper W W. Size variation in tracheary cells: I. A comparison between the secondary xylems of vascular cryptogams, gymnosperms and angiosperms. Proceedings of the American Academy of Arts and Sciences, 1918, 54 (2): 149- 204.
doi: 10.2307/20025747 |
|
Beeckman H. Wood anatomy and trait-based ecology. IAWA Journal, 2016, 37 (2): 127- 151.
doi: 10.1163/22941932-20160127 |
|
Berglund L A, Burgert I. Bioinspired wood nanotechnology for functional materials. Advanced Materials, 2018, 30 (19): e1704285.
doi: 10.1002/adma.201704285 |
|
Björklund J, Seftigen K, Schweingruber F, et al. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in northern Hemisphere conifers. New Phytologist, 2017, 216 (3): 728- 740.
doi: 10.1111/nph.14639 |
|
Bouslimi B, Koubaa A, Bergeron Y. Intra-ring variations and interrelationships for selected wood anatomical and physical properties of Thuja occidentalis L. Forests, 2019, 10 (4): 339.
doi: 10.3390/f10040339 |
|
Buttó V, Millan M, Rossi S, et al. Contrasting carbon allocation strategies of ring-porous and diffuse-porous species converge toward similar growth responses to drought. Frontiers in Plant Science, 2021, 12, 760859.
doi: 10.3389/fpls.2021.760859 |
|
Carlquist S. How wood evolves: a new synthesis. Botany, 2012, 90 (10): 901- 940.
doi: 10.1139/b2012-048 |
|
Carlquist S. Conifer tracheids resolve conflicting structural requirements: data, hypotheses, questions. Journal of the Botanical Research Institute of Texas, 2017, 11 (1): 123- 141.
doi: 10.17348/jbrit.v11.i1.1144 |
|
Carlquist S. Living cells in wood 3. overview; functional anatomy of the parenchyma network. The Botanical Review, 2018, 84 (3): 242- 294.
doi: 10.1007/s12229-018-9198-5 |
|
Carrer M, Unterholzner L, Castagneri D. Wood anatomical traits highlight complex temperature influence on Pinus cembra at high elevation in the eastern Alps. International Journal of Biometeorology, 2018, 62 (9): 1745- 1753.
doi: 10.1007/s00484-018-1577-4 |
|
Chang H C, Gacias Amengual N, Botz A, et al. Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors. Nature Communications, 2022, 13, 6258.
doi: 10.1038/s41467-022-33963-w |
|
Chen C J, Kuang Y D, Zhu S Z, et al. Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5, 642- 666.
doi: 10.1038/s41578-020-0195-z |
|
Chen Z Q, Abramowicz K, Raczkowski R, et al. Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce. Holzforschung, 2016, 70 (9): 829- 838.
doi: 10.1515/hf-2015-0138 |
|
Cunha Neto I L, Hall B T, Lanba A R, et al. Laser ablation tomography (LATscan) as a new tool for anatomical studies of woody plants. New Phytologist, 2023, 239 (1): 429- 444.
doi: 10.1111/nph.18831 |
|
de Blaere R D, Lievens K, Hassel D V, et al. 2023. SmartWoodID – an image collection of large end-grain surfaces to support wood identification systems. Database, 34. | |
de Mil T, Tarelkin Y, Hahn S, et al. Wood density profiles and their corresponding tissue fractions in tropical angiosperm trees. Forests, 2018, 9 (12): 763.
doi: 10.3390/f9120763 |
|
Dünisch O. Relationship between anatomy and vibration behaviour of softwoods and hardwoods. IAWA Journal, 2017, 38 (1): 81- 98.
doi: 10.1163/22941932-20170158 |
|
Dyachuk P, Arzac A, Peresunko P, et al. AutoCellRow (ACR)–a new tool for the automatic quantification of cell radial files in conifer images. Dendrochronologia, 2020, 60, 125687.
doi: 10.1016/j.dendro.2020.125687 |
|
Elliott A D. Confocal microscopy: principles and modern practices. Current protocols in Cytomery, 2019, 92, e68. | |
Esteban L G, de Palacios P, Heinz I, et al. Softwood anatomy: a review. Forests, 2023, 14, 323.
doi: 10.3390/f14020323 |
|
Evans R, Downes G, Menz D, et al. Rapid measurement of variation in tracheid transverse dimensions in a Radiata pine tree. Appita Journal, 2017, 70 (3): 284- 289. | |
Fonti P, Babushkina E A. Tracheid anatomical responses to climate in a forest-steppe in southern Siberia. Dendrochronologia, 2016, 39, 32- 41.
doi: 10.1016/j.dendro.2015.09.002 |
|
Gärtner H, Cherubini P, Fonti P, et al. A technical perspective in modern tree-ring research: how to overcome dendroecological and wood anatomical challenges. Journal of Visualized Experiments, 2015a, (97): 52337. | |
Gärtner H, Banzer L, Schneider L, et al. Preparing micro sections of entire (dry) conifer increment cores for wood anatomical time-series analyses. Dendrochronologia, 2015b, 34, 19- 23.
doi: 10.1016/j.dendro.2015.03.004 |
|
Gasson P E, Lancaster C A, Young R, et al. 2021. WorldForestID: addressing the need for standardized wood reference collections to support authentication analysis technologies; a way forward for checking the origin and identity of traded timber. Plants, People, Planet, 3(2): 130−141. | |
Gennaretti F, Carrer M, García-González I, et al. Editorial: Quantitative wood anatomy to explore tree responses to global change. Frontiers in Plant Science, 2022, 13, 998895.
doi: 10.3389/fpls.2022.998895 |
|
Guo B X, Lü H F, Xu B. Study on the influence of wood ray morphological characteristics on the tensile strength of wood parallel to grain. Industrial Crops and Products, 2024, 221, 119258.
doi: 10.1016/j.indcrop.2024.119258 |
|
Guo J, Song K L, Salmén L, et al. Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydrate Polymers, 2015, 115, 207- 214.
doi: 10.1016/j.carbpol.2014.08.040 |
|
Guo J, Xiao L, Han L Y, et al. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2 400 years old. IAWA Journal, 2019, 40 (4): 820- 844.
doi: 10.1163/22941932-40190241 |
|
Gupta P, Bisht D, Kandpal V, et al. 2021. Advances in the wood anatomical studies with innovations in microscopy: a review// Pingault N, Roshetko J M, Meybeck A. Asia-Pacific forest sector outlook: innovative forestry for a sustainable future. Youth contributions from Asia and the Pacific. CGIAR Research Program on Forests, Trees and Agroforestry (FTA) and FAO. | |
Haag V, Koch G, Richter H G, et al. Wood anatomical and topochemical analyses to characterize juvenile and adult wood of lesser-known species from Central America (Mexico). IAWA Journal, 2019, 40 (4): 785- 803.
doi: 10.1163/22941932-40190256 |
|
Hanna M G, Parwani A, Sirintrapun S J. Whole slide imaging: technology and applications. Advances in Anatomic Pathology, 2020, 27 (4): 251- 259.
doi: 10.1097/PAP.0000000000000273 |
|
Helmling S, Olbrich A, Heinz I, et al. Atlas of vessel elements. IAWA Journal, 2018, 39 (3): 249- 352.
doi: 10.1163/22941932-20180202 |
|
Hubau W, den Bulcke J V, Kitin P, et al. Complementary imaging techniques for charcoal examination and identification. IAWA Journal, 2013, 34 (2): 147- 168.
doi: 10.1163/22941932-00000013 |
|
IAWA Committee. IAWA List of microscopic features for hardwood identification. IAWA Bull, 1989, 10, 219- 332.
doi: 10.1163/22941932-90000496 |
|
IAWA Committee. IAWA list of microscopic features for softwood identification. IAWA Journal, 2004, 25, 1- 70.
doi: 10.1163/22941932-90000349 |
|
Inkson B J. In materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing, 2016, Singapore, 17. | |
Keret R, Schliephack P M, Stangler D F, et al. An open-source machine-learning approach for obtaining high-quality quantitative wood anatomy data from E. grandia and P. radiata xylem. Plant Science, 2024, 340, 111970.
doi: 10.1016/j.plantsci.2023.111970 |
|
Klisz M, Miodek A, Kojs P, et al. Long slide holders for microscope stages. IAWA Journal, 2018, 39 (4): 489- 496.
doi: 10.1163/22941932-20170213 |
|
Koddenberg T, Militz H. Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography. Micron, 2018, 111, 28- 35.
doi: 10.1016/j.micron.2018.05.004 |
|
Kurihara D, Mizuta Y, Sato Y, et al. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development, 2015, 142 (23): 4168- 4179. | |
Lamesa A, Tsegaye B. Evaluation of fiber characteristics and basic density of Acacia melanoxylon (R. Br. ) grown in Ethiopia for pulp and paper making. Annals of Civil and Environmental Engineering, 2022, 6 (1): 53- 61.
doi: 10.29328/journal.acee.1001041 |
|
Lehnebach R, Campioli M, Gričar J, et al. High-resolution X-ray computed tomography: a new workflow for the analysis of xylogenesis and intra-seasonal wood biomass production. Frontiers in Plant Science, 2021, 12, 698640.
doi: 10.3389/fpls.2021.698640 |
|
Li S, Lu S, Yuan C H, et al. The three-dimensional distribution of bordered pits across growth rings of stem segment in Platycladus orientalis (Cupressaceae)seedlings. IAWA Journal, 2023a, 45 (2): 177- 194.
doi: 10.1163/22941932-bja10145 |
|
Li L Z, Cao Q H, Wu Y T, et al. Wood-derived continuously oriented three-phase interfacial channels for high-performance quasi-solid-state alkaline zinc batteries. Advanced Materials, 2023b, 35 (26): e2300132.
doi: 10.1002/adma.202300132 |
|
Li R, Guo J, Macchioni N, et al. Characterisation of waterlogged archaeological wood from Nanhai No. 1 shipwreck by multidisciplinary diagnostic methods. Journal of Cultural Heritage, 2022a, 56, 25- 35.
doi: 10.1016/j.culher.2022.05.004 |
|
Li S, Li X, Wang J, et al. Hydraulic traits are coupled with plant anatomical traits under drought-rewatering cycles in Ginkgo biloba L. Tree Physiology, 2022b, 42 (6): 1216- 1227.
doi: 10.1093/treephys/tpab174 |
|
Li T, Zhang X, Lacey S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18 (6): 608- 613.
doi: 10.1038/s41563-019-0315-6 |
|
Li W, Chen Z J, Yu H P, et al. Wood-derived carbon materials and light-emitting materials. Advanced Materials, 2021, 33 (28): e2000596.
doi: 10.1002/adma.202000596 |
|
Liang W, Heinrich I, Helle G, et al. Applying CLSM to increment core surfaces for histometric analyses: a novel advance in quantitative wood anatomy. Dendrochronologia, 2013, 31 (2): 140- 145.
doi: 10.1016/j.dendro.2012.09.002 |
|
Link R M, Schuldt B, Choat B, et al. Maximum-likelihood estimation of xylem vessel length distributions. Journal of Theoretical Biology, 2018, 455, 329- 341.
doi: 10.1016/j.jtbi.2018.07.036 |
|
Liu H Q, Lin F H, Lin J H, et al. Phase-retrieval-based synchrotron X-ray micro-tomography for 3D structural characterization and quantitative analysis of agalloch eaglewood. Wood Science and Technology, 2018, 52 (3): 839- 854.
doi: 10.1007/s00226-018-1004-3 |
|
Liu P L, Zhang X, Mao J F, et al. The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biology, 2020, 21 (1): 291.
doi: 10.1186/s13059-020-02198-7 |
|
Liu S J, He T, Wang J J, et al. 2022. Can quantitative wood anatomy data coupled with machine learning analysis discriminate CITES species from their look-alikes? Wood Science and Technology, 56(5): 1567−1583. | |
Luostarinen K, Heräjärvi H. Relationship between anatomy and shear strength in wood of Larix sibirica. Holzforschung, 2018, 72 (11): 1001- 1006.
doi: 10.1515/hf-2018-0032 |
|
Ma L Y, Meng Q L, Jiang X M, et al. Spatial organization and connectivity of wood rays in Pinus massoniana xylem based on high-resolution μCT-assisted network analysis. Planta, 2023, 258 (2): 28.
doi: 10.1007/s00425-023-04185-1 |
|
Maaß M C, Saleh S, Militz H, et al. The structural origins of wood cell wall toughness. Advanced Materials, 2020, 32 (16): e1907693.
doi: 10.1002/adma.201907693 |
|
Majda M, Kozlova L, Banasiak A, et al. Elongation of wood fibers combines features of diffuse and tip growth. New Phytologist, 2021, 232 (2): 673- 691.
doi: 10.1111/nph.17468 |
|
Martin B, Colin J, Perré P, et al. CT investigation of 3D liquid pathways in the anatomical structure of Norway spruce wood during imbibition. Holzforschung, 2022, 76 (7): 592- 603.
doi: 10.1515/hf-2021-0154 |
|
Meng Q L, Fu F, Wang J, et al. Ray traits of juvenile wood and mature wood: Pinus massoniana and Cunninghamia lanceolata. Forests, 2021, 12 (9): 1277.
doi: 10.3390/f12091277 |
|
Mi R Y, Chen C J, Keplinger T, et al. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11 (1): 3836.
doi: 10.1038/s41467-020-17513-w |
|
Morris H, Plavcová L, Cvecko P, et al. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 2016, 209 (4): 1553- 1565.
doi: 10.1111/nph.13737 |
|
Muhammad N A, Armynah B, Tahir D. High transparent wood composite for effective X-ray shielding applications. Materials Research Bulletin, 2022, 154, 111930.
doi: 10.1016/j.materresbull.2022.111930 |
|
Nedzved A, Mitrović A L, Savić A, et al. Automatic image processing morphometric method for the analysis of tracheid double wall thickness tested on juvenile Picea omorika trees exposed to static bending. Trees, 2018, 32 (5): 1347- 1356.
doi: 10.1007/s00468-018-1716-x |
|
Olano J M, Arzac A, García-Cervigón A I, et al. New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. New Phytologist, 2013, 198 (2): 486- 495.
doi: 10.1111/nph.12113 |
|
Olson M E. From Carlquist’s ecological wood anatomy to Carlquist’s law: why comparative anatomy is crucial for functional xylem biology. American Journal of Botany, 2020, 107 (10): 1328- 1341.
doi: 10.1002/ajb2.1552 |
|
Ozden S, Ennos A R. Understanding the function of rays and wood density on transverse fracture behavior of green wood of three species. Journal of Agricultural Science and Technology, 2014, B4, 731- 743. | |
Pace M R, Gerolamo C S, Onyenedum J G, et al. The wood anatomy of Sapindales: diversity and evolution of wood characters. Brazilian Journal of Botany, 2022, 45 (1): 283- 340.
doi: 10.1007/s40415-021-00764-2 |
|
Pandey S. Climatic influence on tree wood anatomy: a review. Journal of Wood Science, 2021, 67 (1): 24.
doi: 10.1186/s10086-021-01956-w |
|
Perré P, Almeida G, Ayouz M, et al. New modelling approaches to predict wood properties from its cellular structure: image-based representation and meshless methods. Annals of Forest Science, 2016, 73 (1): 147- 162.
doi: 10.1007/s13595-015-0519-0 |
|
Pramod S, Patel P B, Rao K S. 2013. Influence of exogenous ethylene on cambial activity, xylogenesis and ray initiation in young shoots of Leucaena leucocephala (lam. ) de Wit. Flora-Morphology, Distribution, Functional Ecology of Plants, 208(10/11/12): 549-555. | |
Prendin A L, Mayr S, Beikircher B, et al. Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. Tree Physiology, 2018, 38 (8): 1088- 1097.
doi: 10.1093/treephys/tpy065 |
|
Prendin A L, Petit G, Carrer M, et al. New research perspectives from a novel approach to quantify tracheid wall thickness. Tree Physiology, 2017, 37 (7): 976- 983.
doi: 10.1093/treephys/tpx037 |
|
Račko V, Mišíková O, Štefková J, et al. A fast method to prepare microslides of wood in advanced stages of decay. IAWA Journal, 2018, 39 (2): 234- 243.
doi: 10.1163/22941932-20170196 |
|
Reinig F, Gärtner H, Crivellaro A, et al. Introducing anatomical techniques to subfossil wood. Dendrochronologia, 2018, 52, 146- 151.
doi: 10.1016/j.dendro.2018.10.005 |
|
Rendle B J. Wood anatomy as a link between botany and forestry. Nature, 1932, 130 (3292): 834- 836.
doi: 10.1038/130834a0 |
|
Resente G, Gillert A, Trouillier M, et al. Mask, train, repeat! Artificial intelligence for quantitative wood anatomy. Frontiers in Plant Science, 2021, 12, 767400.
doi: 10.3389/fpls.2021.767400 |
|
Salmén L. 2018. Wood cell wall structure and organisation in relation to mechanics//Plant Biomechanics. Cham: Springer International Publishing: 3-19. | |
Scholz A, Klepsch M, Karimi Z, et al. 2013. How to quantify conduits in wood? Frontiers in Plant Science, 4: 56. | |
Seo J W, Smiljanić M, Wilmking M. Optimizing cell-anatomical chronologies of Scots pine by stepwise increasing the number of radial tracheid rows included: case study based on three Scandinavian sites. Dendrochronologia, 2014, 32 (3): 205- 209.
doi: 10.1016/j.dendro.2014.02.002 |
|
Stepanova A V, Oskolski A A, Tilney P M, et al. Wood anatomy of the tribe podalyrieae (Fabaceae, Papilionoideae): diversity and evolutionary trends. South African Journal of Botany, 2013, 89, 244- 256.
doi: 10.1016/j.sajb.2013.07.023 |
|
Tang Q H, Zou M, Chang L, et al. A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chemical Engineering Journal, 2022, 430, 132152.
doi: 10.1016/j.cej.2021.132152 |
|
Toumpanaki E, Shah D U, Eichhorn S J. Beyond what meets the eye: imaging and imagining wood mechanical-structural properties. Advanced Materials, 2021, 33 (28): e2001613.
doi: 10.1002/adma.202001613 |
|
von Arx G, Arzac A, Olano J M, et al. Assessing conifer ray parenchyma for ecological studies: pitfalls and guidelines. Frontiers in Plant Science, 2015, 6, 1016. | |
von Arx G, Carrer M, Crivellaro A, et al. Q-NET–a new scholarly network on quantitative wood anatomy. Dendrochronologia, 2021, 70, 125890.
doi: 10.1016/j.dendro.2021.125890 |
|
von Arx G, Crivellaro A, Prendin A L, et al. Quantitative wood anatomy-practical guidelines. Frontiers in Plant Science, 2016, 7, 781. | |
von Baeyer M, Marston J M. Best practices for digitizing a wood slide collection: the bailey-wetmore wood collection of the Harvard University Herbaria. Quaternary International, 2021, 593, 50- 59. | |
Wang J, Li S, Guo J, et al. Characterization and comparison of the wood anatomical traits of plantation grown Quercus acutissima and Quercus variabilis. IAWA Journal, 2021, 42 (3): 244- 257.
doi: 10.1163/22941932-bja10049 |
|
Wheeler E A, Baas P, Rodgers S. Variations in dieot wood anatomy: a global analysis based on the inside wood database. IAWA Journal, 2007, 28 (3): 229- 258.
doi: 10.1163/22941932-90001638 |
|
Wheeler E A, Baas P. Wood evolution: Baileyan trends and Functional traits in the fossil record. IAWA Journal, 2019, 40 (3): 488- 529.
doi: 10.1163/22941932-40190230 |
|
Wheeler E A, Gasson P E, Baas P. Using the InsideWood web site: potentials and pitfalls. IAWA Journal, 2020, 41 (4): 412- 462.
doi: 10.1163/22941932-bja10032 |
|
Wiedenhoeft A C. The XyloPhone: toward democratizing access to high-quality macroscopic imaging for wood and other substrates. IAWA Journal, 2020, 41 (4): 699- 719.
doi: 10.1163/22941932-bja10043 |
|
Williamson V G, Milburn J A. Xylem vessel length and distribution: does analysis method matter? A study using Acacia. Australian Journal of Botany, 2017, 65 (3): 292- 303.
doi: 10.1071/BT16220 |
|
Yin L J, Ma L Y, Jiang X M, et al. Positional differences in the micro- and ultra-structural variations of ray parenchyma cells during the transformation from sapwood to heartwood. Frontiers in Plant Science, 2024, 15, 1431818.
doi: 10.3389/fpls.2024.1431818 |
|
Yin L, Jiang X, Ma L, et al. Anatomical adaptions of pits in two types of ray parenchyma cells in Populus tomentosa during the xylem differentiation. Journal of Plant Physiology, 2022, 278, 153830.
doi: 10.1016/j.jplph.2022.153830 |
|
Yin Y, Berglund L, Salmén L. Effect of steam treatment on the properties of wood cell wall. Biomacromolecules, 2011, 112, 194- 202. | |
Zemke V, Haag V, Koch G. Wood identification of charcoal with 3D-reflected light microscopy. IAWA Journal, 2020, 41 (4): 478- 489.
doi: 10.1163/22941932-bja10033 |
|
Zhang S, Belien E, Ren H, et al. Wood anatomy of boreal species in a warming world: a review. IForest - Biogeosciences and Forestry, 2020, 13 (1): 130- 138.
doi: 10.3832/ifor3230-013 |
|
Zhernova D A, Nilova M V, Oskolski A A. Comparative wood anatomy of Astropanax and Neocussonia, an Afro-Malagasy lineage of Araliaceae. Botanical Journal of the Linnean Society, 2021, 195 (3): 327- 347.
doi: 10.1093/botlinnean/boaa067 |
|
Zhong lY, Wu G F, Fu F, et al. A novel constitutive model for the porosity related super-large deformation and anisotropic behavior of wood under perpendicular to grain compression. Wood Science and Technology, 2022, 56 (2): 553- 571.
doi: 10.1007/s00226-022-01361-6 |
|
Ziaco E. A phenology-based approach to the analysis of conifers intra-annual xylem anatomy in water-limited environments. Dendrochronologia, 2020, 59, 125662.
doi: 10.1016/j.dendro.2019.125662 |
|
Ziemińska K, Westoby M, Wright I J. Broad anatomical variation within a narrow wood density range: a study of twig wood across 69 Australian angiosperms. PLoS One, 2015, 10 (4): e0124892.
doi: 10.1371/journal.pone.0124892 |
|
Zou M, Chen Y P, Chang L, et al. Toward 90 μm superthin transparent wood film impregnated with quantum dots for color-converting materials. ACS Sustainable Chemistry & Engineering, 2022, 10 (6): 2097- 2106. |
[1] | 刘守佳,何拓,陆杨,焦立超,郭娟,Alex CWiedenhoeft,殷亚方. 桃花心木木材定量解剖特征变异性及其识别[J]. 林业科学, 2024, 60(5): 169-176. |
[2] | 何拓,刘守佳,陆杨,张永刚,焦立超,殷亚方. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统[J]. 林业科学, 2021, 57(9): 152-159. |
[3] | 孙耀星;戚继忠;杨庚;庞久寅;杜凤国. 赛黑桦的构造特征和物理力学性质[J]. 林业科学, 2012, 48(2): 180-186. |
[4] | 李国旗 张纪林 安树青 李瑾 王云静. 土壤盐胁迫下杨树次生木质部的解剖特征[J]. 林业科学, 2003, 39(4): 89-97. |
[5] | 林鹏 林益明 林建辉. 桐花树和海桑次生木质部的生态解剖[J]. 林业科学, 2000, 36(2): 125-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||