林业科学 ›› 2024, Vol. 60 ›› Issue (1): 32-46.doi: 10.11707/j.1001-7488.LYKX20220351
伍冰晨1,2,3(),齐实2,*,郭郑曦2,4,胡译水2,5
收稿日期:
2022-05-19
接受日期:
2023-12-07
出版日期:
2024-01-25
发布日期:
2024-01-29
通讯作者:
齐实
E-mail:934932988@qq.com
基金资助:
Bingchen Wu1,2,3(),Shi Qi2,*,Zhengxi Guo2,4,Yishui Hu2,5
Received:
2022-05-19
Accepted:
2023-12-07
Online:
2024-01-25
Published:
2024-01-29
Contact:
Shi Qi
E-mail:934932988@qq.com
摘要:
目的: 确定环境变量对林地浅表层滑坡风险预测的相对贡献率,明确影响浅表层滑坡风险的关键植被因素及其减灾区间,探明植被因素与非植被因素对浅表层滑坡风险的耦合效应,为林地浅表层滑坡风险评价和减灾决策制定提供科学依据。方法: 以华蓥山林地为研究对象,选取17个浅表层滑坡影响因子,采用最大熵模型进行林地浅表层滑坡风险模拟,输出各因子对林地浅表层滑坡风险预测的相对贡献率,对比分析考虑或不考虑植被因素条件下林地浅表层滑坡风险对各因子的响应变化。结果: 1) 模型精度受试者工作特征曲线检验结果显示,不考虑植被因素的情况下,模型模拟精度为0.887,达到很准确的精度水平;考虑植被因素的情况下,模型模拟精度提升3.1%,为0.915,达到极准确的精度水平。2) 工程地质岩组、蓄积量、距断层距离、地形起伏度、高程、绿色比值植被指数、平面曲率和林分类型8个因子对浅表层滑坡风险预测的累计贡献率达80%,其中植被因素对林地浅表层滑坡风险预测具有重要作用,主要体现在蓄积量、植被覆盖度和林分类型3方面。3) 植被因素的存在造成浅表层滑坡风险对平面曲率、坡向、高程变异系数、坡度变率和坡面曲率5个变量的响应发生变化:对平面曲率、高程变异系数和剖面曲率所产生的浅表层滑坡风险起削弱作用,削减幅度分别为4.9%、5.9%和8.1%;对坡度变率所产生的浅表层滑坡风险起加剧作用,加剧幅度为10.9%;对坡向所产生的浅表层滑坡风险具有正反2方面作用,加剧和削减幅度分别为12.8%和6.4%。结论: MaxEnt模型用于林地浅表层滑坡风险模拟具有较高模拟精度,能够直观表达浅表层滑坡风险对各影响因子的响应;利用MaxEnt模型预测林地浅表层滑坡风险时,除了地质、地形、地貌、土壤等常规影响因素外,植被因素也是关键环境变量,其对模拟精度具有重要贡献;植被因素的存在整体上不改变浅表层滑坡风险对其他影响因子的响应趋势,但对于某些非植被因素的极端值所产生的浅表层滑坡风险具有重要影响,呈现出耦合效应,既可能加剧也可能削弱浅表层滑坡风险。
中图分类号:
伍冰晨,齐实,郭郑曦,胡译水. 基于最大熵模型的华蓥山林地浅表层滑坡风险析因[J]. 林业科学, 2024, 60(1): 32-46.
Bingchen Wu,Shi Qi,Zhengxi Guo,Yishui Hu. Attribution of Superficial Landslide Risk of Forestland in Huaying Mountains Based on MaxEnt Model[J]. Scientia Silvae Sinicae, 2024, 60(1): 32-46.
表1
滑坡区域和非滑坡区域的解译标志"
解译标志Interpretation mark | 非滑坡区域Non-landslide area | 滑坡区域Landslide area |
颜色Color | 墨绿色Atrovirens | 浅绿色Light green |
纹理Texture | 粗糙,颗粒感强Rough, strong sense of grain | 光滑,颗粒感弱Smooth, weak sense of grain |
形状Shape | 斑块面积大,形状不规则Large patch and irregular shape | 斑块面积小,形状细长Small patch and elongated |
分布Distribution | 山区绝大多数区域Vast majority of mountainous area | 沟谷、斜坡等区域 Valleys, slope and other areas |
表2
浅表层滑坡评价因子提取方法及数据来源"
数据名称Data name | 原始数据Raw data | 提取工具Extraction tool | 数据来源Data sources | 数据精度 Data precision |
工程地质岩组Engineering geological rock group | 华蓥市地质因子分级图Geological factor grading map of Huaying City | 要素转栅格Element to raster | 四川省地质环境监测总站Sichuan Geological Environment Monitoring Station | 1: 20000 |
距断层距离Distance from fault | 华蓥市地质略图 Geology sketch map of Huaying City | 缓冲分析、要素转栅格Buffer analysis, element to raster | 四川省地质环境监测总站Sichuan Geological Environment Monitoring Station | 1: 20000 |
距河流距离Distance from river | 华蓥市水系图 River system map of Huaying City | 缓冲分析、要素转栅格Buffer analysis, element to raster | 四川省地质环境监测总站Sichuan Geological Environment Monitoring Station | 1: 20000 |
高程Elevation | 华蓥市地形图 Terrain map of Huaying City | 地形转栅格Topo to raster | 华蓥市自然资源和林业局Huaying Natural Resources and Forestry Bureau | 1: 10000 |
高程变异系数 Elevation variation coefficient | 高程Elevation | 焦点统计、栅格计算器 Focus statistics, raster calculator | 华蓥市自然资源和林业局Huaying Natural Resources and Forestry Bureau | 1: 10000 |
坡度Slope | 坡度分析Slope analysis | |||
坡度变率Slope variability | 坡度分析Slope analysis | |||
地形起伏度Terrain relief | 焦点统计Focus statistics | |||
平面曲率Plane curvature | 曲率分析Curvature analysis | |||
剖面曲率Profile curvature | 曲率分析Curvature analysis | |||
坡向Slope aspect | 坡向分析Aspect analysis | |||
红绿植被指数Green-red vegetation index | 2014年华蓥市遥感影像Remote sensing image 2014 of Huaying City | 栅格计算器Raster calculator | Bigmap地图下载器Google地图源Bigmap downloader, Google Map Source | 4 m |
土层厚度Soil thickness | 2019年华蓥市森林资源二类调查Second survey on forest resource 2019 of Huaying City | 要素转栅格Element to raster | 华蓥市自然资源和林业局Huaying Natural Resources and Forestry Bureau | 1: 10000 |
林分密度Stand density | ||||
蓄积量Stock volume | ||||
林分类型Stand types | ||||
平均树龄Mean tree age |
表3
不考虑植被因素时环境变量对MaxEnt模型预测的相对贡献"
环境变量 Environment variable | 贡献率 Contribution rate(%) | 累积贡献率 Cumulative contribution rate(%) |
工程地质岩组Engineering geological rock group | 39.4 | 39.4 |
距断层距离Distance from fault | 18.7 | 58.1 |
高程Elevation | 10.2 | 68.3 |
平面曲率Plane curvature | 6.1 | 74.4 |
地形起伏度Terrain relief | 5.8 | 80.2 |
坡向Slope aspect | 4.7 | 84.9 |
距河流距离Distance from river | 4.2 | 89.1 |
高程变异系数 Elevation variation coefficient | 3.9 | 93.0 |
土层厚度Soil thickness | 2.3 | 95.3 |
坡度Slope | 1.9 | 97.2 |
坡度变率Slope variability | 1.5 | 98.7 |
剖面曲率Profile curvature | 1.3 | 100.0 |
表4
考虑植被因素时环境变量对MaxEnt模型预测的相对贡献"
环境变量Environment variable | 贡献率 Contribution rate(%) | 累积贡献率 Cumulative contribution rate(%) |
工程地质岩组Engineering geological rock group | 25.2 | 25.2 |
蓄积量Stock volume | 17.0 | 42.2 |
距断层距离Distance from fault | 10.7 | 52.9 |
地形起伏度Terrain relief | 6.5 | 59.4 |
高程Elevation | 5.8 | 65.2 |
绿红植被指数Green-red vegetation index | 5.4 | 70.6 |
平面曲率Plane curvature | 5.2 | 75.8 |
林分类型Stand type | 5.0 | 80.8 |
坡向Slope aspect | 4.0 | 84.8 |
距河流距离Distance from river | 3.8 | 88.6 |
高程变异系数 Elevation variation coefficient | 2.9 | 91.5 |
平均树龄Mean tree age | 2.8 | 94.3 |
土层厚度Soil thickness | 2.3 | 96.6 |
坡度变率Slope variability | 1.0 | 97.6 |
剖面曲率Profile curvature | 1.0 | 98.6 |
林分密度Stand density | 0.8 | 99.4 |
坡度Slope | 0.6 | 100.0 |
表5
各环境变量对华蓥山林地浅表层滑坡风险的致灾区间和极端值"
环境变量Environment variable | 致灾区间 Disaster zone | 极端值 Extreme value |
工程地质岩组Engineering geological rock group | ?0.74~ ?0.674 | ?0.674 |
蓄积量Stock volume/(m3?hm2) | 96~142 | 122 |
距断层距离Distance from fault/m | 1 850~5 500 | 3 750 |
地形起伏度Terrain relief/m | 77~125 | 125 |
高程Elevation/m | 445~490 | 460 |
绿红植被指数Green-red vegetation index | ?0.28~0.16 | 0.01 |
平面曲率Plane curvature | ?3.8~ ?0.8, 3.3~4.5 | 4.5 |
林分类型Stand type | — | — |
坡向Slope aspect/(°) | — | — |
距河流距离Distance from river/m | — | — |
高程变异系数Elevation variation coefficients | 0.019~0.078 | 0.078 |
平均树龄Mean tree age/a | 39~50 | 42 |
土层厚度Soil thickness/m | 0.65~0.68 | 0.67 |
坡度变率Slope variability/(°) | 38~48 | 48 |
剖面曲率Profile curvature | ?3.7~ ?1.7 | ?3.7 |
林分密度Stand density/hm?2 | 950~1 250 | 1 100 |
坡度Slope/(°) | 5~9, 55~66 | 66 |
陈 斌, 王宏志, 李仁东. 鄂西南山地土地利用时空格局的梯度效应研究. 湖北大学学报(自然科学版), 2019, 41 (2): 109- 117. | |
Chen B, Wang H Z, Li R D. Research on the land use spatial pattern and spatio-temporal changes in the south-western mountains of Hubei Province. Journal of Hubei University (Natural Science Edition), 2019, 41 (2): 109- 117. | |
陈利顶, 贾福岩, 汪亚峰. 黄土丘陵区坡面形态和植被组合的土壤侵蚀效应研究. 地理科学, 2015, 35 (9): 1176- 1182. | |
Chen L D, Jia F Y, Wang Y F. The effects of slope configuration and vegetation pattern on soil erosion in the loess hilly area. Scientia Geographica Sinica, 2015, 35 (9): 1176- 1182. | |
崔阳阳. 2021. 基于不同评价单元的滑坡易发性评价方法研究——以陕西省洛南县为例. 西安: 西安科技大学. | |
Cui Y Y. 2021. A comparative study on evaluation methods of landslide susceptibility based on different evaluation units: a case study of Luonan County, Shaanxi Province. Xi’an: Xi’an University of Science and Technology. [in Chinese] | |
韩用顺, 孙湘艳, 刘 通, 等. 基于证据权-投影寻踪模型的藏东南地质灾害易发性评价. 山地学报, 2021, 39 (5): 672- 686. | |
Han Y S, Sun X Y, Liu T, et al. Susceptibility evaluation of geological hazards based on evidence weight-projection pursuit model in southeast Tibet, China. Mountain Research, 2021, 39 (5): 672- 686. | |
贺 鹏, 童立强, 郭兆成, 等. GIS支持下基于层次分析法的西藏札达地区滑坡灾害易发性评价研究. 科学技术与工程, 2016, 16 (25): 193- 200. | |
He P, Tong L Q, Guo Z C, et al. Evaluation research on the landslide disaster liability in Zhada region of Tibet. Science Technology and Engineering, 2016, 16 (25): 193- 200. | |
李 凯, 孙悦迪, 江宝骅, 等. 基于像元二分法的白龙江流域植被覆盖度与滑坡时空格局分析. 兰州大学学报(自然科学版), 2014, 50 (3): 376- 382. | |
Li K, Sun Y D, Jiang B H, et al. Analysis on spatial-temporal patterns of the vegetation coverage and landslides in Bailongjiang River Basin based on the dimidiate pixel model. Journal of Lanzhou University (Natural Sciences), 2014, 50 (3): 376- 382. | |
李阳兵, 张阳阳. 平行岭谷区建设用地格局演变扩展的通道与低山阻隔效应. 地理研究, 2010, 29 (3): 440- 448. | |
Li Y B, Zhang Y Y. Effects of obstruction and corridor on the construction land pattern evolving in paralleled ridge-valley area. Geographical Research, 2010, 29 (3): 440- 448. | |
刘 月, 王宁涛, 周 超, 等. 基于ROC曲线与确定性系数法集成模型的三峡库区奉节县滑坡易发性评价. 安全与环境工程, 2020, 27 (4): 61- 70. | |
Liu Y, Wang N T, Zhou C, et al. Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie County, Three Gorges Reservoir. Safety and Environmental Engineering, 2020, 27 (4): 61- 70. | |
毛华锐, 孙小飞, 周颖智. 基于频率比-投影寻踪模型的渝东北三峡库区滑坡敏感性制图. 科学技术与工程, 2022, 22 (5): 1803- 1813. | |
Mao H R, Sun X F, Zhou Y Z. Mapping landslide susceptibility of the Three Gorges Reservoir area in northeast Chongqing using the frequency ratio and projection pursuit model. Science Technology and Engineering, 2022, 22 (5): 1803- 1813. | |
欧阳贝思, 张明阳, 王克林, 等. 2000—2010年南方丘陵山地带土地覆被及景观格局变化特征. 农业现代化研究, 2013, 34 (4): 467- 471. | |
Ouyang B S, Zhang M Y, Wang K L, et al. The characteristics of the changes of the land cover and landscape pattern in southern hillside during 2000—2010. Research of Agricultural Modernization, 2013, 34 (4): 467- 471. | |
蒲娉璠. 2016. 重庆市滑坡灾害时空分布特征与易发性评价研究. 上海: 华东师范大学. | |
Pu P P. 2016. Analysis of temporal and spatial characteristics of landslide disaster and landslide susceptibility assessment in Chongqing. Shanghai: East China Normal University. [in Chinese] | |
邱海军, 崔 鹏, 曹明明, 等. 基于最大熵原理的黄土丘陵区地质灾害规模频率分布研究. 岩土力学, 2014, 35 (12): 3541- 3549,3555. | |
Qiu H J, Cui P, Cao M M, et al. Distribution of frequency-size of geological disaster base on principle of maximum entropy in loess plateau. Rock and Soil Mechanics, 2014, 35 (12): 3541- 3549,3555. | |
屈新星, 李道安, 何云玲, 等. 基于MaxEnt模型的滑坡易发性评价: 以攀枝花市为例. 水土保持研究, 2021, 28 (2): 224- 229. | |
Qu X X, Li D A, He Y L, et al. Evaluation of landslide susceptibility based on MaxEnt model-taking Panzhihua City as an example. Research of Soil and Water Conservation, 2021, 28 (2): 224- 229. | |
孙德亮. 2019. 基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究. 上海: 华东师范大学. | |
Sun D L. 2019. Mapping landslide susceptibility based on machine learning and forecast warning of landslide induced by rainfall. Shanghai: East China Normal University. [in Chinese] | |
王成武, 刘 新. 基于Maxent的四川省滑坡易发性评价. 河北地质大学学报, 2022, (2): 81- 86. | |
Wang C W, Liu X. Assessment on landslide susceptibility in Sichuan based on maxent model. Journal of Hebei Geo University, 2022, (2): 81- 86. | |
王静雯. 2020. 坡面流水动力学特性及增阻机制. 杨凌: 西北农林科技大学. | |
Wang J W. 2020. Hydrodynamic characteristics of overland flow and its increasing resistance mechanisms. Yangling: Northwest A&F University. [in Chinese] | |
王卫东, 钟 晟. 基于GIS的Logistic回归模型在地质灾害危险性区划中的应用. 工程勘察, 2009, 37 (11): 5- 10. | |
Wang W D, Zhong S. The application of GIS-based logistic regression for geological hazards zonation. Journal of Geotechnical Investigation & Surveying, 2009, 37 (11): 5- 10. | |
吴孝情, 赖成光, 陈晓宏, 等. 基于随机森林权重的滑坡危险性评价: 以东江流域为例. 自然灾害学报, 2017, 26 (5): 119- 129. | |
Wu X Q, Lai C G, Chen X H, et al. A landslide hazard assessment based on random forest weight: a case study in the Dongjiang River Basin. Journal of Natural Disasters, 2017, 26 (5): 119- 129. | |
杨永红, 王成华, 刘淑珍, 等. 不同植被类型根系提高浅层滑坡土体抗剪强度的试验研究. 水土保持研究, 2007, 14 (2): 233- 235. | |
Yang Y H, Wang C H, Liu S Z, et al. Experimental research on improving shear strength of soil in surface landslide by root system of different vegetation type. Research of Soil and Water Conservation, 2007, 14 (2): 233- 235. | |
张兴航, 张百平, 王 晶, 等. 神农架林区植被分布与地形的关系研究. 地球信息科学学报, 2020, 22 (3): 482- 493. | |
Zhang X H, Zhang B P, Wang J, et al. Study on the relationship between terrain and distribution of the vegetation in Shennongjia forestry district. Journal of Geo-Information Science, 2020, 22 (3): 482- 493. | |
Aghdam I N, Varzandeh M H M, Pradhan B. Landslide susceptibility mapping using an ensemblestatistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at AlborzMountains (Iran). Environmental Earth Sciences, 2016, 75 (7): 1- 20. | |
Chen W, Li W P, ChaiH C, et al. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Sciences, 2015, 75 (1): 1- 14. | |
Chen W, Pourghasemi H R, Kornejady A, et al. Landslide spatial modeling: introducinAg new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 2017, 305, 314- 327.
doi: 10.1016/j.geoderma.2017.06.020 |
|
De Rose R C. Slope control on the frequency distribution of shallow landslides and associated soil properties, north Island, New Zealand. Earth Surface Processes and Landforms, 2013, 38 (4): 356- 371.
doi: 10.1002/esp.3283 |
|
Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011, 17 (1): 43- 57.
doi: 10.1111/j.1472-4642.2010.00725.x |
|
Gonzalez-Ollauri A, Munro K, Mickovski S B, et al. The ‘rocket framework’: a novel framework to define key performance indicators for nature-based solutions against shallow landslides and erosion. Frontiers in Earth Science, 2021, 9, 676059.
doi: 10.3389/feart.2021.676059 |
|
Guo W Z, Chen Z X, Wang W L, et al. Telling a different story: the promote role of vegetation in the initiation of shallow landslides during rainfall on the Chinese Loess Plateau. Geomorphology, 2020, 350, 106879.
doi: 10.1016/j.geomorph.2019.106879 |
|
Jiao Y M, Zhao D M, Ding Y P, et al. Performance evaluation for four GIS-based models purposed to predict and map landslide susceptibility: acase study at a World Heritage site in Southwest China. Catena, 2019, 183, 104221.
doi: 10.1016/j.catena.2019.104221 |
|
Krzeminska D, Kerkhof T, SkaalsveenK, et al. Effect of riparian vegetation on stream bank stability in small agricultural catchments. Catena, 2019, 172, 87- 96.
doi: 10.1016/j.catena.2018.08.014 |
|
Li M Y, Ma C, Du C, et al. Landslide response to vegetation by example of July 25-26, 2013, extreme rainstorm, Tianshui, Gansu Province, China. Bulletin of Engineering Geology and the Environment, 2021, 80 (2): 751- 764.
doi: 10.1007/s10064-020-02000-9 |
|
Liu C X, Wang Y J, Ma C, et al. Quantifying the effect of non-spatial and spatial forest stand structure on rainfall partitioning in mountain forests, Southern China. The Forestry Chronicle, 2018, 94 (2): 162- 172.
doi: 10.5558/tfc2018-025 |
|
McGuire L A, Rengers F K, Kean J W, et al. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: insights from an extreme rainfall event in the Colorado Front Range. Geophysical Research Letters, 2016, 43 (17): 9084- 9092.
doi: 10.1002/2016GL070741 |
|
Peduzzi P. Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach. Natural Hazards and Earth System Sciences, 2010, 10 (4): 623- 640.
doi: 10.5194/nhess-10-623-2010 |
|
Pollen N. Temporal and spatial variability in root reinforcement of streambanks: accounting for soil shear strength and moisture. Catena, 2007, 69 (3): 197- 205.
doi: 10.1016/j.catena.2006.05.004 |
|
Qi T J, Zhao Y, Meng X M, et al. AI-based susceptibility analysis of shallow landslides induced by heavy rainfall in Tianshui, China. Remote Sensing, 2021, 13 (9): 1819.
doi: 10.3390/rs13091819 |
|
Rickli C, Graf F. Effects of forests on shallow landslides - Case studies in Switzerland. Forest Snow and Landscape Research, 2009, 82 (1): 33- 44. | |
Simon A, Collison A J C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surface Processes and Landforms, 2002, 27 (5): 527- 546.
doi: 10.1002/esp.325 |
|
Spiekermann R I, Smith H G, McColl S, et al. Quantifying effectiveness of trees for landslide erosion control. Geomorphology, 2022, 396, 107993.
doi: 10.1016/j.geomorph.2021.107993 |
|
Stokes A, Atger C, Bengough A G, et al. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plantand Soil, 2009, 324 (1/2): 1- 30. | |
Thiery Y, Malet J P, Sterlacchini S, et al. Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology, 2007, 92 (1/2): 38- 59. | |
Yan H Y, Feng L, Zhao Y F, et al. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Global Ecology and Conservation, 2020, 21, e00856.
doi: 10.1016/j.gecco.2019.e00856 |
|
Zhang K L, Yao L J, Meng J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 2018, 634, 1326- 1334.
doi: 10.1016/j.scitotenv.2018.04.112 |
[1] | 王博,杨雪清,蒋春颖,刘冬,陈锋,白夜,刘晓东. 基于GIS的北京市延庆区森林火灾蔓延风险[J]. 林业科学, 2023, 59(8): 90-101. |
[2] | 王宏星,孙晓梅,陈东升,吴春燕,张守攻. 适度间伐对日本落叶松人工林生物多样性和土壤多功能性影响[J]. 林业科学, 2023, 59(6): 1-11. |
[3] | 田晓瑞,宗学政,王明玉. 野外-城市交界域的火管理研究进展[J]. 林业科学, 2023, 59(6): 149-158. |
[4] | 张紫优,王彦辉,田奥,刘泽彬,郭建斌,于澎涛,王晓,于艺鹏. 宁夏六盘山华北落叶松人工林植被碳密度时空特征及其环境响应[J]. 林业科学, 2023, 59(4): 32-45. |
[5] | 刘文浩,王晓,段文标,于澎涛,王彦辉,于艺鹏. 西宁市油松人工林生长季水量平衡特征[J]. 林业科学, 2023, 59(4): 46-56. |
[6] | 何晨阳,闫峰,卢琦,焦岩. 2001—2020年埃及植被生长状况时空变化特征[J]. 林业科学, 2023, 59(3): 65-72. |
[7] | 赵世魁,郭晋平,张芸香. 暖温带山地天然次生林演替序列根系呼吸速率对林地增温的响应[J]. 林业科学, 2023, 59(2): 10-21. |
[8] | 张淑宁,陈俊兴,敖敦,红梅,张雅茜,包福海,王淋,乌云塔娜,白玉娥,包文泉. 气候变化背景下我国长柄扁桃潜在适生区预测[J]. 林业科学, 2023, 59(12): 25-36. |
[9] | 曾赞青,宋涵晴,高俊宏,王淼淼,武耀星,漆良华. 北京市森林植被固碳与能源碳排放时空变化及潜力预测[J]. 林业科学, 2023, 59(12): 51-60. |
[10] | 王富炜,田明华,陈绍志,李红勋,胡明形. 中国木浆进口风险的多维度分析与评价[J]. 林业科学, 2023, 59(10): 150-161. |
[11] | 程春香,于敏,毛子军,谢连妮,张永成,孙涛,徐作敏,吴双,荔千妮,徐嘉. 中国生态保护修复进程下的黑龙江省NPP时空演变及突变模式[J]. 林业科学, 2022, 58(7): 23-31. |
[12] | 胡同欣,杨艺璇,孙龙,高传宇. 兴安落叶松林和白桦林下种植大球盖菇对枯落物层燃烧性的影响[J]. 林业科学, 2022, 58(7): 32-42. |
[13] | 张宇凡,党英侨,王小艺. 基于气候和寄主因素的栗山天牛中国成灾和扩散风险评估[J]. 林业科学, 2022, 58(6): 95-109. |
[14] | 普慧梅,李源,吴锦奎,马泽,宋维峰. 哈尼梯田水源区3种典型植被下不同水体的氢氧稳定同位素特征及相互关系[J]. 林业科学, 2022, 58(5): 1-9. |
[15] | 吴联杯,张卫民,童红卫. 林地定级及基准价的研究与应用——以浙江省龙泉市为例[J]. 林业科学, 2022, 58(5): 151-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||