林业科学 ›› 2020, Vol. 56 ›› Issue (2): 48-60.doi: 10.11707/j.1001-7488.20200206
王颜波1,2,张伟溪1,丁昌俊1,苏晓华1,*
收稿日期:2019-02-14
									
				
									
				
									
				
											出版日期:2020-02-25
									
				
											发布日期:2020-03-17
									
			通讯作者:
					苏晓华
												基金资助:Yanbo Wang1,2,Weixi Zhang1,Changjun Ding1,Xiaohua Su1,*
Received:2019-02-14
									
				
									
				
									
				
											Online:2020-02-25
									
				
											Published:2020-03-17
									
			Contact:
					Xiaohua Su   
												摘要:
目的: 研究生长在3个不同地点的银中杨根和茎中内生细菌和真菌的多样性,为植物和微生物互作研究提供参考。方法: 分别在黑龙江省大庆市林源镇常围子村、齐齐哈尔市错海林场和北京市房山区韩村河东营苗圃,取银中杨根和茎,表面消毒后,提取微生物DNA,通过16S rRNA和内部转录间隔区(ITS)扩增子IlluminaMiSeq测序以确定内生细菌和真菌群落的多样性。结果: 测序结果根据97%的序列相似性水平,将细菌和真菌的reads分别归类为1 541和240个OTU。与数据库比对后确定银中杨内生细菌群落主要以放线菌纲、β-变形菌纲、α-变形菌纲、γ-变形菌纲和拟杆菌纲为主,内生真菌群落主要以座囊菌纲、伞菌纲、子囊菌纲、和银耳纲为主。α多样性和β多样性结果表明,北京、大庆和齐齐哈尔3个地点银中杨的茎内生菌群落明显聚集;而根内生菌群落表现出依赖于植物器官和生长环境的现象。Mantel检验结果表明,pH值、土壤有机质(SOM)含量和钾(K)含量与杨树根内生菌群落显著相关(P < 0.05);而氮(N)、磷(P)含量并不是解释银中杨根内生菌群落差异的重要因素。由此确定不同生态环境下生长的银中杨不同器官中的核心微生物,共获得23个核心细菌OTU,归属于6个纲;22个核心真菌OTU,归属于7个纲。还可确定7个根内生细菌指示OTU:Actinophytocola、游动放线菌属、假诺卡氏菌属、红微菌属、链霉菌属、贪噬菌属和慢生根瘤菌属;5个茎内生细菌指示OTU:双歧杆菌属、红球菌属、小杆菌属、粪杆菌属和微球菌属。2个根内生真菌指示OTU:小球腔菌属和Ilyonectria;3个茎内生真菌指示OTU:格孢腔目、链格孢属和Endosporium。UpSetR结果表明:内生细菌中有51(3.30%)个OTU被6组样本共有,6个组单独特有的OTU占总OTU数的4.54%~15.44%;内生真菌中有1(0.42%)个OTU被6组样本共有,6个组单独特有的OTU占了总OTU数的2.92%~29.17%。结论: 银中杨根内生细菌和真菌群落结构取决于栽植环境中土壤的pH值、有机质含量和钾含量。不同植物器官可代表内生菌群落的独特生态位。本研究可确定与银中杨不同器官和不同生长环境条件相关的指示OTU和核心微生物。
中图分类号:
王颜波,张伟溪,丁昌俊,苏晓华. 不同生态环境下银中杨内生菌群落结构及生态位变异[J]. 林业科学, 2020, 56(2): 48-60.
Yanbo Wang,Weixi Zhang,Changjun Ding,Xiaohua Su. Community Structure and Niche Differentiation of Endophytic Microbiome in Populus alba×P. berolinensis under Different Ecological Environment[J]. Scientia Silvae Sinicae, 2020, 56(2): 48-60.
表1
Illumina测序分析的质量指标"
| 质量指标 Quality metrics  |  微生物 Microorganism  |  根Root | 茎Stem | |||||
| 大庆Daqing | 北京Beijing | 齐齐哈尔Qiqihar | 大庆Daqing | 北京Beijing | 齐齐哈尔Qiqihar | |||
| 平均序列数Average of reads | 细菌Bacteria | 56 322±1 404 | 48 408±2357 | 51 063±2 249 | 65 134±7 121 | 67 383±8 655 | 60 422±7 691 | |
| 真菌Fungi | 43 887±2 355 | 51 118±4 313 | 47 400±2 332 | 72 160±4 296 | 69 731±3 178 | 71 812±1 953 | ||
| 平均读长Average read length | 细菌Bacteria | 397±1 | 395±0 | 395±0 | 394±0 | 394±0 | 394±0 | |
| 真菌Fungi | 318±12 | 277±9 | 268±25 | 282±17 | 276±22 | 274±9 | ||
| 非目标序列Non-target rRNA (%) 线粒体/叶绿体/质体 Mitochondria/Chloroplast/Plastid  |  细菌Bacteria 真菌Fungi  |  0.03±0.01 0  |  0.02±0.00 0  |  0.01±0.01 0  |  0 0  |  0.01±0.00 0  |  0.01±0.00 0  |  |
| 未分类序列 Unclassified reads(%)  |  细菌Bacteria 真菌Fungi  |  0.02±0.01 4.45±2.14  |  0.02±0.01 24.11±12.05  |  0.24±0.24 0.89±0.75  |  0 19.93±13.88  |  0 25.42±16.49  |  0 4.75±2.07  |  |
表5
指示种分析①"
| 内生菌类型 Endophytic type  |  OTU(属或以上) OTU(genus or higher)  |  植物器官/种植地点 Plant compartments/Plant locations  |  指标值 Indicator value  |  P | 相对丰度 Relative abundance(%)  |  
| 细菌 Bacteria  |  Actinophytocola | 根Root | 0.943 | 0.001*** | 14.51 | 
| 游动放线菌属Actinoplanes | 根Root | 0.943 | 0.001*** | 1.28 | |
| 假诺卡氏菌属Pseudonocardia | 根Root | 0.882 | 0.003** | 1.39 | |
| 红微菌属Rhodomicrobium | 根Root | 0.882 | 0.001*** | 3.23 | |
| 链霉菌属Streptomyces | 根Root | 0.999 | 0.001*** | 11.91 | |
| 贪噬菌属Variovorax | 根Root | 0.957 | 0.004** | 1.84 | |
| 慢生根瘤菌属Bradyrhizobium | 根Root | 0.957 | 0.011* | 1.33 | |
| 双歧杆菌属Bifidobacterium | 茎Stem | 0.917 | 0.004** | 1.75 | |
| 小杆菌属Dialister | 茎Stem | 0.739 | 0.041* | 1.66 | |
| 粪杆菌属Faecalibacterium | 茎Stem | 0.814 | 0.026* | 1.48 | |
| 微球菌属Micrococcus | 茎Stem | 0.810 | 0.017* | 1.46 | |
| 红球菌属Rhodococcus | 茎Stem | 0.980 | 0.002** | 1.31 | |
| Actinophytocola | 大庆(根)Daqing (Root) | 0.989 | 0.044* | 1.66 | |
| Acidibacter | 齐齐哈尔(根)Qiqihar(Root) | 1.000 | 0.036* | 1.44 | |
| 真菌 Fungi  |  小球腔菌属Leptosphaeria | 根Root | 0.816 | 0.007** | 7.99 | 
| Ilyonectria | 根Root | 0.943 | 0.001*** | 4.37 | |
| 格孢腔目Pleosporales | 茎Stem | 0.995 | 0.002** | 42.40 | |
| 链格孢属Alternaria | 茎Stem | 0.810 | 0.047* | 4.57 | |
| Endosporium | 茎Stem | 0.816 | 0.008* | 48.55 | |
| 木霉属Trichoderma | 大庆(根)Daqing (Root) | 1.000 | 0.032* | 2.72 | |
| 口蘑属Tricholoma | 大庆(根)Daqing (Root) | 1.000 | 0.032* | 8.88 | |
| 锤舌菌纲Leotiomycetes | 大庆(根)Daqing (Root) | 0.989 | 0.032* | 2.28 | |
| 革菌科Thelephoraceae | 大庆(根)Daqing (Root) | 1.000 | 0.032* | 6.01 | |
| 子囊菌门Ascomycota | 大庆(根)Daqing (Root) | 1.000 | 0.032* | 42.69 | |
| 隐球菌属Cryptococcus | 齐齐哈尔(根)Qiqihar(Root) | 1.000 | 0.032* | 2.14 | |
| Neosetophoma | 北京(茎)Beijing (Stem) | 1.000 | 0.036* | 2.25 | 
表4
种植地点和植物器官对核心内生菌结构的影响"
| 内生菌类型 Endophytic type  |  影响因子 Impact factor  |  分组 Groups  |  属或以上Genus or higher | 各分组的丰度Abundance of each group(%) | P | ||
| 第1分组 The first group  |  第2分组 The second group  |  第3分组 The third group  |  |||||
| 细菌 Bacteria  |  种植地点 Plant locations  |  DR/JR/QR | 慢生根瘤菌属Bradyrhizobium | 1.17 | 0.08 | 5.00 | 0.036* | 
| 青枯菌属Ralstonia | 0.39 | 1.79 | 3.63 | 0.047* | |||
| 植物器官 Plant compartments  |  DR/DS | 红球菌属Rhodococcus | 3.38 | 47.05 | 0.001*** | ||
| 根瘤菌属Rhizobium | 9.24 | 0.12 | 0.007** | ||||
| 红微菌属Rhodomicrobium | 3.48 | 0 | 0.039* | ||||
| JR/JS | 红球菌属Rhodococcus | 6.69 | 41.03 | 0.019* | |||
| QR/QS | 青枯菌属Ralstonia | 3.63 | 11.3 | 0.008** | |||
| 慢生根瘤菌属Bradyrhizobium | 3.98 | 0.45 | 0.025* | ||||
| 红球菌属Rhodococcus | 24.29 | 44.28 | 0.047* | ||||
| 真菌 Fungi  |  种植地点 Plant locations  |  DR/JR/QR | 子囊菌门Ascomycota | 53.49 | 3.01 | 0.09 | 0.027* | 
| 小球腔菌属Leptosphaeria | 1.33 | 22.71 | 0 | 0.035* | |||
| 口蘑属Tricholoma | 8.88 | 0 | 0 | 0.022* | |||
| 植物器官 Plant compartments  |  DR/DS | 子囊菌门Ascomycota Endosporium | 53.49 | 0.09 | < 0.001*** | ||
| 0 | 68.10 | 0.008** | |||||
| JR/JS | 革菌目Thelephorales | 6.08 | 0 | 0.017* | |||
| QR/QS | 格孢菌目Pleosporales Endosporium | 0.23 | 78.50 | < 0.001*** | |||
| 0 | 77.90 | 0.023* | |||||
|  
											  华苟根, 郭坚华.  红球菌属的分类及应用研究进展. 微生物学通报, 2003. 30 (4): 107- 111. 
											 												 doi: 10.3969/j.issn.0253-2654.2003.04.027  | 
										|
|  
											   Hua G G ,  Guo J H .  The taxonomy and application of Rhodococcus. Microbiology China, 2003. 30 (4): 107- 111. 
											 												 doi: 10.3969/j.issn.0253-2654.2003.04.027  | 
										|
| 刘丛丛, 韩俊杰, 刘宏伟. 小球腔菌属次级代谢产物的化学及其生物学活性研究进展. 天然产物研究与开发, 2017. 29 (12): 2163- 2174. | |
| Liu C C , Han J J , Liu H W . Secondary metabolites produced by Leptosphaeria and their bioactivities. Natural Product Research and Development, 2017. 29 (12): 2163- 2174. | |
| 王艳云, 郭笃发. 黄河三角洲盐碱地土壤真菌多样性. 北方园艺, 2016. 40 (18): 185- 189. | |
| Wang Y Y , Guo D F . Fungal diversity of saline alkali soil in Yellow River Delta. Northern Horticulture, 2016. 40 (18): 185- 189. | |
|  
											   Antoun H ,  Beauchamp C J ,  Goussard N , et al.  Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes:effect on radishes (Raphanus sativus L.). Plant and Soil, 1998. 204 (1): 57- 67. 
											 												 doi: 10.1023/A:1004326910584  | 
										|
|  
											   Azarias Guimarães A ,  Florentino L A ,  Alves Almeida K , et al.  High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Systematic and Applied Microbiology, 2015. 38 (6): 433- 441. 
											 												 doi: 10.1016/j.syapm.2015.06.006  | 
										|
| Beckers B, Beeck M O D, Thijs S, et al. 2016. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Frontiers in Microbiology, 7. | |
|  
											   Beckers B ,  Beeck M O D ,  Weyens N , et al.  Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 2017. 5 (1): 25. 
											 												 doi: 10.1186/s40168-017-0241-2  | 
										|
|  
											   Bolger A ,  Lohse M ,  Usadel B .  Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30, 2114- 2120. 
											 												 doi: 10.1093/bioinformatics/btu170  | 
										|
| Bulgarelli D , Rott M , Schlaeppi K , et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012. 488 (4709): 91- 95. | |
|  
											   Bulgarelli D ,  Schlaeppi K ,  Spaepen S , et al.  Structure and functions of the bacterial microbiota of plants. Annual Review Plant Biology, 2013. 64 (1): 807- 838. 
											 												 doi: 10.1146/annurev-arplant-050312-120106  | 
										|
|  
											   Cáceres M D ,  Legendre P .  Associations between species and groups of sites:indices and statistical inference. Ecology, 2009. 90 (12): 3566- 3574. 
											 												 doi: 10.1890/08-1823.1  | 
										|
|  
											   Carrion V J ,  Cordovez V ,  Tyc O , et al.  Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. The ISME Journal, 2018. 12 (9): 2307- 2321. 
											 												 doi: 10.1038/s41396-018-0186-x  | 
										|
| Compant S , Clément C , Sessitsch A . Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry, 2009. 42 (5): 669- 678. | |
|  
											   Dickie I .  Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytologist, 2010. 188 (4): 916- 918. 
											 												 doi: 10.1111/j.1469-8137.2010.03473.x  | 
										|
| Edgar R , Haas B , Clemente J , et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011. 27 (6): 2194- 2200. | |
| Fonseca-García C, Coleman-Derr D, Garrido E, et al. 2016. The cacti microbiome: interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, 7. | |
|  
											   Gołębiewski M ,  Deja-Sikora E ,  Cichosz M , et al.  16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microbial Ecology, 2014. 67 (3): 635- 647. 
											 												 doi: 10.1007/s00248-013-0344-7  | 
										|
| Gottel N R , Castro H F , Kerley M , et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Applied and Enviromental Microbiology, 2011. 77 (7): 5934- 5944. | |
| Hallmann J A , Quadt-Hallmann A , Mahaffee W F , et al. Endophytic bacteria in agricultural crops. Canadian Journal of Microbiology, 2011. 43 (6): 895- 914. | |
|  
											   Hardoim ,  Pablo R ,  Overbeek V , et al.  Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 2008. 16 (10): 463- 471. 
											 												 doi: 10.1016/j.tim.2008.07.008  | 
										|
|  
											   Hartman W H ,  Richardson C J ,  Vilgalys R , et al.  Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci U S A, 2008. 105 (46): 17842- 17847. 
											 												 doi: 10.1073/pnas.0808254105  | 
										|
| Hibbett D S . A phylogenetic overview of the Agaricomycotina. Mycologia, 2007. 98 (6): 917- 925. | |
|  
											   Inceoǧlu O ,  Salles J F ,  Van O L , et al.  Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Applied and Environmental Microbiology, 2010. 76 (11): 3675- 3684. 
											 												 doi: 10.1128/AEM.00040-10  | 
										|
|  
											   Ishida T A ,  Nara K ,  Ma S , et al.  Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza, 2009. 19 (5): 329- 335. 
											 												 doi: 10.1007/s00572-008-0219-9  | 
										|
| Ivica L , Peer B . Interactive tree of life v2:online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 2011. 39 (suppl 2): W475- W478. | |
|  
											   Janpen P ,  Kiwamu M ,  Kamonluck T , et al.  The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology, 2009. 42 (2): 141- 149. 
											 												 doi: 10.1016/j.apsoil.2009.02.008  | 
										|
| Kesari V , Ramesh A M , Rangan L . Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. Biomed Research International, 2013. (1): 165198. | |
|  
											   Lauber C L ,  Hamady M ,  Knight R , et al.  Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009. 75 (15): 5111- 5120. 
											 												 doi: 10.1128/AEM.00335-09  | 
										|
|  
											   Liu H ,  Carvalhais L C ,  Crawford M , et al.  Inner plant values:diversity, colonization and benefits from endophytic bacteria. Frontiers Microbiology, 2017. 8, 2552. 
											 												 doi: 10.3389/fmicb.2017.02552  | 
										|
|  
											   Lozupone C A ,  Knight R .  Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104 (27): 11436- 11440. 
											 												 doi: 10.1073/pnas.0611525104  | 
										|
|  
											   Lu X ,  Zhang Y ,  Liu C , et al.  Characterization of the antimonite-and arsenite-oxidizing bacterium Bosea sp. AS-1 and its potential application in arsenic removal. Journal of Hazardous Materials, 2018. 359, 527- 534. 
											 												 doi: 10.1016/j.jhazmat.2018.07.112  | 
										|
|  
											   Lunsmann V ,  Kappelmeyer U ,  Benndorf R , et al.  In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environmental Microbiology, 2016. 18 (4): 1176- 1186. 
											 												 doi: 10.1111/1462-2920.13133  | 
										|
|  
											   Magoč T ,  Salzberg S .  Flash:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011. 27 (21): 2957- 2963. 
											 												 doi: 10.1093/bioinformatics/btr507  | 
										|
| Marschner P , Solaiman Z , Rengel Z . Growth, phosphorus uptake, and rhizosphere microbial-community composition of a phosphorus-efficient wheat cultivar in soils differing in pH. Journal of Plant Nutrition & Soil Science, 2005. 168 (3): 343- 351. | |
|  
											   Merilä P ,  Malmivaara-Lämsä M ,  Spetz P , et al.  Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Applied Soil Ecology, 2010. 46 (2): 259- 267. 
											 												 doi: 10.1016/j.apsoil.2010.08.003  | 
										|
| Naveed M , Mitter B , Reichenauer T G , et al. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental & Experimental Botany, 2014. 97 (97): 30- 39. | |
|  
											   Perez-Pantoja D ,  Donoso R ,  Agullo L , et al.  Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environmental Microbiology, 2012. 14 (5): 1091- 1117. 
											 												 doi: 10.1111/j.1462-2920.2011.02613.x  | 
										|
| Podolich O , Ardanov P , Zaets I , et al. Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant and Soil, 2014. 388 (1/2): 367- 377. | |
|  
											   Prischl M ,  Hackl E ,  Pastar M , et al.  Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. Applied Soil Ecology, 2012. 54, 39- 48. 
											 												 doi: 10.1016/j.apsoil.2011.12.005  | 
										|
| Rangjaroen C , Rerkasem B , Teaumroong N , et al. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand. Archives of Microbiology, 2014. 196 (1): 35- 49. | |
|  
											   Rasche F ,  Velvis H ,  Zachow C , et al.  Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. Journal of Applied Ecology, 2006. 43 (3): 555- 566. 
											 												 doi: 10.1111/j.1365-2664.2006.01169.x  | 
										|
|  
											   Redman R S ,  Ok K Y ,  Woodward C J D A , et al.  Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis:astrategy for mitigating impacts of climate change. Plos One, 2011. 6 (7): e14823. 
											 												 doi: 10.1371/journal.pone.0014823  | 
										|
| Reeuwijk L P v, International Soil R, Information C. 1995. Procedures for soil analysis. International Soil Reference and Information Centre, Wageningen, The Netherlands. | |
| Rozek K , Rola K , Blaszkowski J , et al. Associations of root-inhabiting fungi with herbaceous plant species of temperate forests in relation to soil chemical properties. Science of the Total Enivironment, 2018. 649, 1573- 1579. | |
|  
											   Sannigrahi P ,  Ragauskas A J ,  Tuskan G A .  Poplar as a feedstock for biofuels:A review of compositional characteristics. Biofuels, Bioproducts and Biorefining, 2010. 4 (2): 209- 226. 
											 												 doi: 10.1002/bbb.206  | 
										|
|  
											   Shakya M ,  Gottel N ,  Castro H , et al.  A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. Plos One, 2013. 8 (10): e76382. 
											 												 doi: 10.1371/journal.pone.0076382  | 
										|
|  
											   Singh R ,  Dubey A K .  Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology, 2018. 9, 1767. 
											 												 doi: 10.3389/fmicb.2018.01767  | 
										|
| Tardif S, Yergeau É, Tremblay J, et al. 2016. The Willow microbiome is influenced by soil petroleum-hydrocarbon concentration with plant compartment-specific effects. Frontiers in Microbiology, 7. | |
| Thiem D, Gołębiewski M, Hulisz P, et al. 2018. How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots? Frontiers in Microbiology, 9: 651. | |
|  
											   Tsuneda A ,  Davey M L ,  Hambleton S , et al.  Endosporium, a new endoconidial genus allied to the Myriangiales. Botany, 2008. 86 (9): 1020- 1033. 
											 												 doi: 10.1139/B08-054  | 
										|
|  
											   Tsuneda A T M N ,  Currah R S .  Scleroconidioma, a new genus of dematiaceous Hyphomycetes. Canadian Journal of Botany, Canadian Journal of Botany, 2000. 78 (10): 1294- 1298. 
											 												 doi: 10.1139/cjb-78-10-1294  | 
										|
| Ulrich K , Ulrich A , Ewald D . Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiology Ecology, 2008. 63 (2): 169- 180. | |
|  
											   Vandenkoornhuyse P ,  Quaiser A ,  Duhamel M , et al.  The importance of the microbiome of the plant holobiont. New Phytologist, 2015. 206 (4): 1196- 1206. 
											 												 doi: 10.1111/nph.13312  | 
										|
|  
											   Vandeputte O ,  Oden S ,  Mol A , et al.  Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Applied and Enviromental Microbiology, 2005. 71 (3): 1169- 1177. 
											 												 doi: 10.1128/AEM.71.3.1169-1177.2005  | 
										|
|  
											   Whitaker B K ,  Reynolds H L ,  Applied and Enviromental Microbidogy ,  Clay K .  Foliar fungal endophyte communities are structured by environment but not host ecotype in Panicum virgatum (switchgrass). Ecology, 2018. 99 (12): 2703- 2711. 
											 												 doi: 10.1002/ecy.2543  | 
										|
| Yaish M W , Alharrasi I , Alansari A S , et al. The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. International Microbiology, 2016a. 19, 143- 155. | |
|  
											   Yaish M W ,  Al-Lawati A ,  Jana G A , et al.  Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). Plos One, 2016b. 11 (7): e0159007. 
											 												 doi: 10.1371/journal.pone.0159007  | 
										|
| Yu X , Yang J , Wang E , et al. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves. Front Microbiol, 2015. 6, 867. | |
|  
											   Zhang L ,  Yue Q ,  Yang K , et al.  Analysis of extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis-UBAF process for the elimination of high-level ciprofloxacin. Chemosphere, 2018. 193, 645- 654. 
											 												 doi: 10.1016/j.chemosphere.2017.11.056  | 
										|
|  
											   Zloch M ,  Thiem D ,  Gadzala-Kopciuch R , et al.  Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere, 2016. 156, 312- 325. 
											 												 doi: 10.1016/j.chemosphere.2016.04.130  | 
										
| [1] | 王雪峰 毕于慧 罗景芳. 银中杨苗木光需求的图像分析法[J]. 林业科学, 2010, 46(4): 161-165. | 
| [2] | 姜中珠 陈祥伟. 多效唑对银中杨、白榆和白桦抗旱性的影响[J]. 林业科学, 2006, 42(8): 130-134. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||