 
		林业科学 ›› 2019, Vol. 55 ›› Issue (10): 193-202.doi: 10.11707/j.1001-7488.20191019
张晓1,2,刘世荣2,*,黄永涛1,傅声雷1
收稿日期:2018-06-22
									
				
									
				
									
				
											出版日期:2019-10-25
									
				
											发布日期:2019-11-26
									
			通讯作者:
					刘世荣
												基金资助:Xiao Zhang1,2,Shirong Liu2,*,Yongtao Huang1,Shenglei Fu1
Received:2018-06-22
									
				
									
				
									
				
											Online:2019-10-25
									
				
											Published:2019-11-26
									
			Contact:
					Shirong Liu   
												Supported by:摘要:
目的: 土壤微生物在维持森林生态系统功能中起着重要作用,研究辽东栎林演替过程中森林土壤微生物群落结构和多样性在演替过程中的变化规律,深入认识森林土壤细菌群落结构恢复和驱动机制。方法: 以太岳山地区皆伐后形成的30、80和150年生次生辽东栎林为对象,于2015年6月每个林型设置为20 m×20 m的森林动态监测样地20个,合计60个,用直径10 cm土钻采集0~10 cm表层土样,利用16S rRNA基因高通量测序技术,测定皆伐后自然恢复过程中森林土壤细菌群落的组成、结构和多样性变化。结果: 在辽东栎林自然恢复过程中,随演替阶段进行,变形菌门和绿弯菌门的相对丰度逐渐增加,而放线菌门和酸杆菌门的相对丰度逐渐降低,疣微菌门和浮霉菌门的相对丰度没有明显变化。拟杆菌门和厚壁菌门的相对丰度在80年生中龄林显著低于30年生幼龄林,而在150年生老龄林和80年生中龄林间却无显著差异。基于weighted UniFrac距离的主坐标分析表明,幼龄林、中龄林和老龄林的细菌群落结构有显著差异。基于OTU水平的Bray-Curtis相似性进一步证明,幼龄林与老龄林的平均细菌群落相似性为37.9%,中龄林与老龄林的相似性增加到47.2%,表明皆伐后自然恢复过程中不同演替阶段的细菌群落结构表现出逐渐向老龄林恢复的趋势。土壤细菌物种丰富度和系统发育多样性在自然恢复过程中呈递减趋势,幼龄林的土壤细菌物种丰富度和系统发育多样性显著高于老龄林,而中龄林和老龄林的土壤细菌多样性差异并不显著。Chao1指数和种系型多度则表现为幼龄林和中龄林间差异不显著,老龄林则显著降低。方差分解表明,皆伐后不同演替阶段的细菌群落变化和土壤有机质、可溶性碳、土壤总氮和有效氮含量等土壤因子显著相关,其中土壤碳和氮含量对细菌群落结构变化的解释量分别为20.2%和26.3%,未解释的部分为43.4%。结论: 皆伐后辽东栎林演替过程中不同恢复阶段土壤细菌群落结构具有显著差异,幼龄林和老龄林细菌群落结构差异最大,中龄林细菌群落结构与老龄林相似。土壤细菌多样性随着演替的进行呈逐步降低的趋势,幼龄林细菌多样性显著高于中龄林和老龄林,中林龄多样性则更加接近老龄林水平。这说明土壤细菌群落结构和多样性在次生演替过程中具有可预测性。
中图分类号:
张晓,刘世荣,黄永涛,傅声雷. 辽东栎林演替过程中的土壤细菌群落结构和多样性变化[J]. 林业科学, 2019, 55(10): 193-202.
Xiao Zhang,Shirong Liu,Yongtao Huang,Shenglei Fu. Changes on Community Structure and Diversity of Soil Bacterial Community during the Succession of Quercus wutaishanica[J]. Scientia Silvae Sinicae, 2019, 55(10): 193-202.
 
												
												表1
不同林型的样地植物群落特征①"
| 林型 Age | 平均树高 Mean height/m | 平均胸径 Mean of DBH/cm | 密度 Stem density (tree·hm-2) | 坡度 Slope degree (°) | 坡向 Slope | 
| 30年生幼龄林30-year-old young forest | 15.2 (6.4) | 12.3 (5.3) | 410 (5.7) | 13.5 (4.5) | 东南Southeast | 
| 80年生中龄林80-year-old middle-aged forest | 18.3 (4.5) | 19.4 (4.7) | 354 (7.1) | 15.8 (4.8) | 东南Southeast | 
| 150年生老龄林150-year-old mature forest | 20.3 (3.8) | 25.5 (4.5) | 284 (5.9) | 14.2 (2.4) | 东南Southeast | 
 
												
												表2
不同恢复阶段土壤理化性质①"
| 林龄 Stand age | 有机碳 SOC /(g·kg-1) | 可溶性碳 DOC/ (mg·kg-1) | 全氮 TN /(g·kg-1) | 有效氮 AN/ (mg·kg-1) | pH | 
| 30年生幼龄林30-year-old young forest | 28.15(6.8)a | 455.64 (84.25)b | 2.16(0.89)a | 169.17 (48.69)a | 7.0(0.35)a | 
| 80年生中龄林80-year-old middle-aged forest | 36.43(7.6)b | 403.39 (96.14)ab | 2.38(0.61)ab | 204.64 (66.87)b | 7.1(0.28)a | 
| 150年生老龄林150-year-old mature forest | 48.67(5.4)c | 347.25 (69.47)a | 2.94(0.93)b | 267.73 (76.53)c | 6.9(0.22)a | 
| 李化山, 汪金松, 刘星, 等. 模拟氮沉降对太岳山油松林土壤呼吸的影响及其持续效应. 环境科学学报, 2014. 34 (1): 238- 249. | |
| Li H S , Wang J S , Liu X , et al. Effects and its sustained effect of simulated nitrogen deposition on soil respiration in Pinus tabulaeformis forests in the Taiyue Mountain, China. Acta Scientiae Circumstantiae, 2014. 34 (1): 238- 249. | |
| 刘世荣, 史作民, 马姜明, 等.  长江上游退化天然林恢复重建的生态对策. 林业科学, 2009. 45 (2): 120- 124. doi: 10.3321/j.issn:1001-7488.2009.02.021 | |
| Liu S R ,  Shi Z M ,  Ma J M , et al.  Ecological strategies for restoration and reconstruction of degraded natural forests on the upper reaches of the Yangtze river. Scientia Silvae Sinicae, 2009. 45 (2): 120- 124. doi: 10.3321/j.issn:1001-7488.2009.02.021 | |
| 刘星, 汪金松, 赵秀海. 模拟氮沉降对太岳山油松林土壤酶活性的影响. 生态学报, 2015. 35 (14): 4613- 4624. | |
| Liu X , Wang J S , Zhao X H . Effects of simulated nitrogen deposition on the soil enzyme activities in a Pinus tabulaeformis forest at the Taiyue Mountain. Acta Ecologica Sinica, 2015. 35 (14): 4613- 4624. | |
| 苏智先, 王仁卿. 生态学概论. 北京: 高等教育出版杜. 1993. | |
| Su Z X , Wang R Q . Outline of review of ecology. Beijing: Higher Education Press. 1993. 176. | |
| 王希群, 王治明, 王占勤, 等.  山西省太岳山森林的保护价值分析. 林业资源管理, 2012. (4): 29- 32. doi: 10.3969/j.issn.1002-6622.2012.04.006 | |
| Wang X Q ,  Wang Z M ,  Wang Z Q , et al.  Protection valus of Taiyue Mountain forests in Shanxi province. Forest Resources Management, 2012. (4): 29- 32. doi: 10.3969/j.issn.1002-6622.2012.04.006 | |
| Banning N C ,  Gleeson D B ,  Grigg A H , et al.  Soil microbial community successional patterns during forest ecosystem restoration. Applied and Environmental Microbiology, 2011. 77 (17): 6158- 6164. doi: 10.1128/AEM.00764-11 | |
| Bardgett R D ,  van der Putten W H .  Belowground biodiversity and ecosystem functioning. Nature, 2014. 515 (7528): 505- 511. doi: 10.1038/nature13855 | |
| Bernard L ,  Mougel P A ,  Maron V , et al.  Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA-and RNA-SIP techniques. Environmental Microbiology, 2007. 9, 752- 764. doi: 10.1111/j.1462-2920.2006.01197.x | |
| Bissett A , Brown M V , Siciliano S D , et al. Microbial community responses to anthropogenically induced environmental change:towards a systems approach. Ecology Letters, 2013. 16 (s1): 128- 139. | |
| Bond P L , Hugenholtz P , Keller J , et al. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Applied and Environmental Microbiology, 1995. 61 (5): 1910- 1916. | |
| Brandstetter A ,  Sletten A ,  Mentler W , et al.  Estimating dissolved organic carbon in natural waters by UV absorbance (254 nm). Zeitschrift Für Pflanzenernährung Und Bodenkunde, 1996. 159, 605- 607. doi: 10.1002/jpln.1996.3581590612 | |
| Camenzind T ,  Hättenschwiler S ,  Treseder K K , et al.  Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 2018. 88 (1): 4- 21. doi: 10.1002/ecm.1279 | |
| Carney K M ,  Matson P A .  Plant communities, soil microorganisms, and soil carbon cycling:does altering the world belowground matter to ecosystem functioning?. Ecosystems, 2005. 8 (8): 928- 940. doi: 10.1007/s10021-005-0047-0 | |
| Cazzolla Gatti R ,  Dudko A ,  Lim A , et al.  The last 50 years of climate-induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecology and Evolution, 2018. 8 (15): 7401- 7420. doi: 10.1002/ece3.4258 | |
| Chase J M .  Community assembly:when should history matter?. Oecologia, 2003. 136 (4): 489- 498. doi: 10.1007/s00442-003-1311-7 | |
| Castle S C ,  Sullivan B W ,  Knelman J , et al.  Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development. Oecologia, 2017. 185 (3): 513- 524. doi: 10.1007/s00442-017-3965-6 | |
| Chu H ,  Neufeld J D ,  Walker V K , et al.  The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low arctic tundra landscape. Soil Science Society of America Journal, 2011. 75 (5): 1756- 1765. doi: 10.2136/sssaj2011.0057 | |
| Doležal J , Yakubov V , Hara T . Plant diversity changes and succession along resource availability and disturbance gradients in Kamchatka. Plant Ecology, 2013. 214 (3): 477- 488. | |
| Dvorský M ,  Doležal J ,  De Bello F , et al.  Vegetation types of East Ladakh:species and growth form composition along main environmental gradients. Applied Vegetation Science, 2011. 14 (1): 132- 147. doi: 10.1111/j.1654-109X.2010.01103.x | |
| Edgar R C ,  Haas B J ,  Clemente J C , et al.  UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011. 27 (16): 2194- 2200. doi: 10.1093/bioinformatics/btr381 | |
| Faith D P .  Conservation evaluation and phylogenetic diversity. Biological Conservation, 1992. 61 (1): 1- 10. doi: 10.1016/0006-3207(92)91201-3 | |
| Ferrenberg S ,  O'Neill S P ,  Knelman J E , et al.  Changes in assembly processes in soil bacterial communities following a wildfire disturbance. The ISME Journal, 2013. 7 (6): 1102- 1111. doi: 10.1038/ismej.2013.11 | |
| Fierer N ,  Nemergut D ,  Knight R , et al.  Changes through time:integrating microorganisms into the study of succession. Research in Microbiology, 2010. 161 (8): 635- 642. doi: 10.1016/j.resmic.2010.06.002 | |
| Freeman K R ,  Pescador M Y ,  Reed S C , et al.  Soil CO2 flux and photoautotrophic community composition in high-elevation, 'barren' soil. Environmental Microbiology, 2009. 11 (3): 674- 686. doi: 10.1111/j.1462-2920.2008.01844.x | |
| Grigal D F . Effects of extensive forest management on soil productivity. Forest Ecology and Management, 2000. 138 (1): 167- 185. | |
| Handelsman J .  Metagenomics:application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 2004. 68, 669- 685. doi: 10.1128/MMBR.68.4.669-685.2004 | |
| Harris J . Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science, 2003. 54 (4): 801- 808. | |
| Hart S A ,  Chen H Y .  Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest. Ecological Monographs, 2008. 78 (1): 123- 140. doi: 10.1890/06-2140.1 | |
| Hugenholtz P , Goebel B M , Pace N R . Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 1998. 180 (18): 4765- 4774. | |
| Johnson E A ,  Miyanishi K .  Testing the assumptions of chronosequences in succession. Ecology Letters, 2008. 11 (5): 419- 431. doi: 10.1111/j.1461-0248.2008.01173.x | |
| Jurgensen M , Harvey A , Graham R , et al. Review article:Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. Forest Science, 1997. 43 (2): 234- 251. | |
| Kardol P ,  Martijn Bezemer T ,  van der Putten W H .  Temporal variation in plant-soil feedback controls succession. Ecology Letters, 2006. 9 (9): 1080- 1088. doi: 10.1111/j.1461-0248.2006.00953.x | |
| Keenan R J ,  Kimmins J .  The ecological effects of clear-cutting. Environmental Reviews, 1993. 1 (2): 121- 144. doi: 10.1139/a93-010 | |
| Kuramae E E ,  Gamper H A ,  Yergeau E , et al.  Microbial secondary succession in a chronosequence of chalk grasslands. The ISME Journal, 2010. 4 (5): 711- 715. doi: 10.1038/ismej.2010.11 | |
| Lage M D ,  Reed H E ,  Weihe C , et al.  Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments. The ISME Journal, 2010. 4 (7): 933- 944. doi: 10.1038/ismej.2010.10 | |
| Maidak B L ,  Olsen G J ,  Larsen N , et al.  The RDP (ribosomal database project). Nucleic Acids Research, 1997. 25 (1): 109- 110. doi: 10.1093/nar/25.1.109 | |
| Mariani L ,  Chang S X ,  Kabzems R .  Effects of tree harvesting, forest floor removal, and compaction on soil microbial biomass, microbial respiration, and N availability in a boreal aspen forest in British Columbia. Soil Biology and Biochemistry, 2006. 38 (7): 1734- 1744. doi: 10.1016/j.soilbio.2005.11.029 | |
| Morrissey E M ,  Mau R L ,  Schwartz E , et al.  Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. The ISME Journal, 2017. 11 (8): 1890. doi: 10.1038/ismej.2017.43 | |
| Nannipieri P , Ascher J , Ceccherini M , et al. Microbial diversity and soil functions. European Journal of Soil Science, 2017. 68 (1): 12- 26. | |
| Nemergut D R , Anderson S P , Cleveland C C , et al. Microbial community succession in an unvegetated, recently deglaciated soil. Microbial Ecology, 2007. 53 (1): 110- 122. | |
| Ortiz-Álvarez R ,  Fierer N ,  de Los Ríos A , et al.  Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. The ISME Journal, 2018. 12 (7): 1658- 1667. doi: 10.1038/s41396-018-0076-2 | |
| Palmer M A ,  Ambrose R F ,  Poff N L .  Ecological theory and community restoration ecology. Restoration Ecology, 1997. 5 (4): 291- 300. doi: 10.1046/j.1526-100X.1997.00543.x | |
| Piao Z ,  Yang L ,  Zhao L , et al.  Actinobacterial community structure in soils receiving long-term organic and inorganic amendments. Applied and Environmental Microbiology, 2008. 74 (2): 526- 530. doi: 10.1128/AEM.00843-07 | |
| Price M N ,  Dehal P S ,  Arkin A P .  FastTree 2-approximately maximum-likelihood trees for large alignments. PloS One, 2010. 5 (3): e9490. doi: 10.1371/journal.pone.0009490 | |
| Qiao N ,  Wang J ,  Xu X , et al.  Priming alters soil carbon dynamics during forest succession. Biology and Fertility of Soils, 2019. 55 (4): 339- 350. doi: 10.1007/s00374-019-01351-0 | |
| Rousk J ,  Bååth E ,  Brookes P C , et al.  Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010. 4 (10): 1340- 1351. doi: 10.1038/ismej.2010.58 | |
| Rui J ,  Li J ,  Wang S , et al.  Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau. Applied and Environmental Microbiology, 2015. 81 (17): 6070- 6077. doi: 10.1128/AEM.00557-15 | |
| Schlesinger W H. 1986. Changes in soil carbon storage and associated properties with disturbance and recovery//Schlesinger W H. The Changing Carbon Cycle. Springer New York, NY, 194-220. | |
| Schnurr-Pütz S , Bååth E , Guggenberger G , et al. Compaction of forest soil by logging machinery favours occurrence of prokaryotes. FEMS Microbiology Ecology, 2006. 58 (3): 503- 516. | |
| Singh J ,  Raghubanshi A ,  Singh R , et al.  Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 1989. 338 (6215): 499- 500. doi: 10.1038/338499a0 | |
| Šnajdr J ,  Dobiášová P ,  Urbanová M , et al.  Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biology and Biochemistry, 2013. 56, 105- 115. doi: 10.1016/j.soilbio.2012.05.004 | |
| Spohn M , Novák T J , Incze J , et al. Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment-A chronosequence study. Plant and Soil, 2016. 401 (1/2): 185- 196. | |
| Srivastava D S ,  Cadotte M W ,  MacDonald A A M , et al.  Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 2012. 15 (7): 637- 648. doi: 10.1111/j.1461-0248.2012.01795.x | |
| Stegen J C ,  Lin X ,  Konopka A E , et al.  Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 2012. 6 (9): 1653- 1664. doi: 10.1038/ismej.2012.22 | |
| Torsvik V ,  Øvreås L .  Microbial diversity and function in soil:from genes to ecosystems. Current Opinion in Microbiology, 2002. 5 (3): 240- 245. doi: 10.1016/S1369-5274(02)00324-7 | |
| Tsagaraki T M ,  Pree B ,  Leiknes Ø , et al.  Bacterial community composition responds to changes in copepod abundance and alters ecosystem function in an Arctic mesocosm study. The ISME Journal, 2018. 12 (11): 2694- 2705. doi: 10.1038/s41396-018-0217-7 | |
| Valiela I ,  Cole M L .  Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems, 2002. 5, 92- 102. doi: 10.1007/s10021-001-0058-4 | |
| van Dijk J ,  Didden W A ,  Kuenen F , et al.  Can differences in soil community composition after peat meadow restoration lead to different decomposition and mineralization rates?. Soil Biology and Biochemistry, 2009. 41 (8): 1717- 1725. doi: 10.1016/j.soilbio.2009.05.016 | |
| Willers C ,  Jansen van Rensburg P ,  Claassens S .  Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. Journal of Applied Microbiology, 2015. 119 (5): 1207- 1218. doi: 10.1111/jam.12902 | |
| Xiang X J , Shi Y P , Yang J B , et al. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Scientific Reports, 2014. 4, 3829. | |
| Yao M ,  Rui J P ,  Li J B , et al.  Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biology and Biochemistry, 2014. 79, 81- 90. doi: 10.1016/j.soilbio.2014.09.009 | |
| Yodzis P. 1986. Competition, mortality, and community structure.//Diamond J M, Case T J. Community Ecology Harper and Row, New York, 480-491. | |
| Zhang K , Cheng X , Shu X , et al. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant and Soil, 2018. 431 (1/2): 19- 36. | |
| Zhang X ,  Liu S ,  Li X , et al.  Changes of soil prokaryotic communities after clear-cutting in a karst forest:evidences for cutting-based disturbance promoting deterministic processes. FEMS Microbiology Ecology, 2016. 92 (3): fiw026. doi: 10.1093/femsec/fiw026 | |
| Zhao C ,  Long J ,  Liao H , et al.  Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, Southwest China. Scientific Reports, 2019. 9, 2160. doi: 10.1038/s41598-018-36886-z | |
| Zhou Z H ,  Wang C K ,  Jiang L F , et al.  Trends in soil microbial communities during secondary succession. Soil Biology and Biochemistry, 2017. 115, 92- 99. doi: 10.1016/j.soilbio.2017.08.014 | 
| [1] | 马松梅, 王春成, 孙芳芳, 魏博, 聂迎彬. 濒危植物新疆野扁桃的遗传多样性[J]. 林业科学, 2019, 55(9): 71-80. | 
| [2] | 王安宁, 黄秋娴, 李晓刚, 徐学华, 李玉灵. 冀北山区不同植被恢复类型根际土壤细菌群落结构及多样性[J]. 林业科学, 2019, 55(9): 130-141. | 
| [3] | 王文杰, 杜红居, 肖路, 张建宇, 仲召亮, 周伟, 张波, 王洪元. 凉水自然保护区3种森林类型的植物组成和林分结构特征[J]. 林业科学, 2019, 55(9): 166-176. | 
| [4] | 曹红雨, 高广磊, 丁国栋, 张英, 赵媛媛, 任悦, 陈宇轩, 郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性[J]. 林业科学, 2019, 55(8): 118-127. | 
| [5] | 胡华英, 张虹, 曹升, 殷丹阳, 周垂帆, 何宗明. 杉木人工林土壤施用生物炭对细菌群落结构及多样性的影响[J]. 林业科学, 2019, 55(8): 184-193. | 
| [6] | 王超群, 焦如珍, 董玉红, 厚凌宇, 赵京京, 赵世荣. 不同林龄杉木人工林土壤微生物群落代谢功能差异[J]. 林业科学, 2019, 55(5): 36-45. | 
| [7] | 马杰, 贾宝全. 北京市六环内城市道路附属绿地木本植物多样性及结构特征[J]. 林业科学, 2019, 55(4): 13-21. | 
| [8] | 李洪果, 陈达镇, 许靖诗, 刘光金, 庞晓东, 叶金辉, 莫小文, 谌红辉. 濒危植物格木天然种群的表型多样性及变异[J]. 林业科学, 2019, 55(4): 69-83. | 
| [9] | 何怀江, 张忠辉, 张春雨, 郝珉辉, 姚杰, 解蛰, 高海涛, 赵秀海. 采伐强度对东北针阔混交林林分生长和物种多样性的短期影响[J]. 林业科学, 2019, 55(2): 1-12. | 
| [10] | 刘鲁霞, 庞勇, 任海保, 李增元. 基于高分2号遥感数据估测中亚热带天然林木本植物物种多样性[J]. 林业科学, 2019, 55(2): 61-74. | 
| [11] | 陈金磊, 方晰, 辜翔, 李雷达, 刘兆丹, 王留芳, 张仕吉. 中亚热带2种森林群落组成、结构及区系特征[J]. 林业科学, 2019, 55(2): 159-172. | 
| [12] | 莫锦华,李佳,刘芳,李晓光,李迪强. 利用红外相机调查海南尖峰岭地区兽类和鸟类多样性[J]. 林业科学, 2019, 55(10): 203-210. | 
| [13] | 任学敏, 朱雅, 陈兆进, 丁传雨, 李玉英, 杨改河. 太白山锐齿槲栎林乔木更新特征及其影响因子[J]. 林业科学, 2019, 55(1): 11-21. | 
| [14] | 刘辉, 吴小芹, 任嘉红, 陈丹. 荧光假单胞菌与红绒盖牛肝菌共接种对杨树根际土壤酶活性及微生物多样性的影响[J]. 林业科学, 2019, 55(1): 22-30. | 
| [15] | 李楠, 姜明, 田雪, 金光泽. 富锦国家湿地公园的轮虫群落结构及水质评价[J]. 林业科学, 2019, 55(1): 47-55. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||