林业科学 ›› 2025, Vol. 61 ›› Issue (9): 59-69.doi: 10.11707/j.1001-7488.LYKX20250159
• 研究论文 • 上一篇
康敏敏1,2,李平平2,万艳芳2,*(),段文标1(
),于澎涛2,王彦辉2,张小全3,李未来3,高原3
收稿日期:
2025-03-21
出版日期:
2025-09-25
发布日期:
2025-10-10
通讯作者:
万艳芳
E-mail:wanyf@caf.ac.cn;dwbiao88@163.com
基金资助:
Minmin Kang1,2,Pingping Li2,Yanfang Wan2,*(),Wenbiao Duan1(
),Pengtao Yu2,Yanhui Wang2,Xiaoquan Zhang3,Weilai Li3,Yuan Gao3
Received:
2025-03-21
Online:
2025-09-25
Published:
2025-10-10
Contact:
Yanfang Wan
E-mail:wanyf@caf.ac.cn;dwbiao88@163.com
摘要:
目的: 准确量化北京山区侧柏人工林的树干液流密度对极端土壤干旱的响应,明确其应对极端干旱胁迫的水分利用策略,为气候变化背景下北京山区林水协调综合管理提供科学依据。方法: 2024年生长季(5—10月),在北京市密云区五座楼林场选取侧柏(当地主要造林树种)人工林,设置1块20 m×20 m固定样地。采用热扩散液流探针连续监测树干液流密度变化,并同步观测气象因子和0~40 cm土层土壤湿度(用土壤相对可利用水分REW表示),分析树干液流密度的变化特征及其对环境因子的响应。结果: 1) 2024年生长季出现连续73天的极端土壤干旱(干旱期5月1日—7月12日),期间REW极低,平均仅为0.11,并伴随着持续高温和强太阳辐射。干旱降低了侧柏的树干液流密度,其在干旱期内一直维持在低水平,平均值仅为0.004 4 mL·cm?2min?1,显著低于生长季内非干旱期的平均值(0.020 2 mL·cm?2min?1)(P<0.01)。2) 干旱胁迫使干旱期内晴天、阴天和雨天等天气类型的液流密度差异减小且不显著(P>0.05)。干旱期内的日间降雨使液流密度短暂回升,导致雨天的平均液流密度(0.004 9 mL·cm?2min?1)略高于晴天和阴天,分别高4.3%和16.7%。3) 干旱改变了液流密度的日变化模式和昼夜占比。非干旱期晴天和阴天的液流密度呈“单峰型”日变化模式,且日间液流密度占比达95%以上,而干旱期晴天和阴天的液流密度日变化呈“波谷型”,且日间液流密度占比大幅降低到44%和51%。干旱期的日间降雨会改变液流密度日变化特征,表现为随日间降雨量增加而增大,有可能日变化模式也恢复为“单峰型”,且日间液流密度占比也逐渐增加。4) 侧柏树干液流密度在干旱期主要受气象因子(太阳辐射强度、饱和水汽压差、降水量)影响,而在非干旱期主要受气象因子和土壤湿度的共同影响。结论: 在极端土壤干旱胁迫下,侧柏会显著降低其液流密度,并改变液流密度日变化特征。在干旱期白天基本未测定到侧柏的树干液流,夜间反而测定到用于补充树体储水的液流。这表明侧柏具有较强的抗旱性,通过白天关闭气孔降低液流密度以减少蒸腾耗水、夜间维持较高液流密度以补充树体储水的方式来改变液流日变化模式和昼夜比例,从而形成较高的干旱胁迫环境适应性。因此,对于极易遭受土壤干旱胁迫的旱区阳坡瘠薄立地,应优先选择栽植耐旱性强的侧柏,并通过密度管理等措施降低林木蒸腾和蒸散耗水,维持基本的林水平衡。本研究阐明了侧柏适应严重土壤干旱胁迫的用水策略,为制定适应气候变化的林水协调综合管理方案提供了理论依据。
中图分类号:
康敏敏,李平平,万艳芳,段文标,于澎涛,王彦辉,张小全,李未来,高原. 北京山区侧柏人工林液流密度对极端土壤干旱的响应[J]. 林业科学, 2025, 61(9): 59-69.
Minmin Kang,Pingping Li,Yanfang Wan,Wenbiao Duan,Pengtao Yu,Yanhui Wang,Xiaoquan Zhang,Weilai Li,Yuan Gao. Response of Sap Flow Density to Extreme Soil Drought in Platycladus orientalis Plantation in Mountainous Area of Beijing[J]. Scientia Silvae Sinicae, 2025, 61(9): 59-69.
敖家坤, 牛健植, 谢宝元, 等. 土壤大孔隙结构对饱和导水率的影响. 北京林业大学学报, 2021, 43 (2): 102- 112. | |
Ao J K, Niu J Z, Xie B Y, et al. Influence of soil macropore structure on saturated hydraulic conductivity. Journal of Beijing Forestry University, 2021, 43 (2): 102- 112. | |
常学尚, 常国乔. 干旱半干旱区土壤水分研究进展. 中国沙漠, 2021, 41 (1): 156- 163. | |
Chang X S, Chang G Q. Advances in research and prospect on soil moisture in arid and semi-arid areas. Journal of Desert Research, 2021, 41 (1): 156- 163. | |
陈宝强, 张建军, 张艳婷, 等. 晋西黄土区辽东栎和山杨树干液流对环境因子的响应. 应用生态学报, 2016, 27 (3): 746- 754. | |
Chen B Q, Zhang J J, Zhang Y T, et al. Whole-tree sap flow of Quercus liaotungensis and Populus davidiana in response to environmental factors in the loess plateau area of western Shanxi Province, northern China. Chinese Journal of Applied Ecology, 2016, 27 (3): 746- 754. | |
陈长启, 和璐璐, 段 劼. 北京油松人工林生长对密度和立地的响应. 西南林业大学学报(自然科学), 2024, 44 (6): 8- 20. | |
Chen C Q, He L L, Duan J. Growth pattern to density and site condition of Pinus tabuliformis plantation in Beijing. Journal of Southwest Forestry University (Natural Sciences), 2024, 44 (6): 8- 20. | |
高连炜, 马子澳, 刘春和, 等. 北京低山区典型人工林树干液流对土壤水分胁迫的响应. 中国水土保持科学, 2024, 22 (4): 129- 136. | |
Gao L W, Ma Z A, Liu C H, et al. Response of tree stem sap to soil moisture stress in typical plantations in the low mountainous area of Beijing. Science of Soil and Water Conservation, 2024, 22 (4): 129- 136. | |
郭海宁, 刘美君, 杜 盛. 降雨减少对刺槐树干液流特征的影响. 生态学杂志, 2024, 43 (1): 122- 130. | |
Guo H N, Liu M J, Du S. Effects of rainfall reduction on stem sap flow of Robinia pseudoacacia. Chinese Journal of Ecology, 2024, 43 (1): 122- 130. | |
韩 磊, 孙兆军, 展秀丽, 等. 宁夏河东沙区柠条植株叶片蒸腾对干旱胁迫的响应. 生态环境学报, 2015, 24 (5): 756- 761. | |
Han L, Sun Z J, Zhan X L, et al. Research on leaf transpiration response to soil water stress of Caragana korshinskii Kom. in Hedong sandy land of Ningxia. Ecology and Environment Sciences, 2015, 24 (5): 756- 761. | |
韩新生. 2020. 六盘山半干旱区三种典型植被的结构变化及其多功能影响. 北京: 中国林业科学研究院. | |
Han X S. 2020. The structure variation and multifunctional effects of three typical vegetations in the semi-arid area of Liupan Mountains. Beijing: Chinese of Academy Forestry. [in Chinese] | |
蒋 涛, 郑文革, 余新晓, 等. 北京山区干旱胁迫下侧柏叶片水分吸收策略. 生态学报, 2020, 42 (4): 1429- 1440. | |
Jiang T, Zheng W G, Yu X X, et al. Leaf water absorption of Platycladus orientalis under drought stress in Beijing. Acta Ecologica Sinica, 2020, 42 (4): 1429- 1440. | |
孔 喆, 陈胜楠, 律 江, 等. 欧美杨单株液流昼夜组成及其影响因素分析. 林业科学, 2020, 56 (3): 8- 20.
doi: 10.11707/j.1001-7488.20200302 |
|
Kong Z, Chen S N, Lü J, et al. Characteristics of Populus euramericana sap flow over day and night and its influencing factors. Scientia Silvae Sinicae, 2020, 56 (3): 8- 20.
doi: 10.11707/j.1001-7488.20200302 |
|
李少宁, 鲁绍伟, 赵云阁, 等. 2019. 北京典型天气下的4种阔叶树种液流特征及其影响因素. 生态与农村环境学报, 35(2): 189−196. | |
Li S N, Lu S W, Zhao Y G, et al. 2020. Characteristics and influencing factors in sap flow of four broadleaved tree species for typical weather conditions of Beijing. Journal of Ecology and Rural Environment, 35(2): 189−196. [in Chinese] | |
林雪雯, 郭建斌, 韩炎穆, 等. 不同天气下华北落叶松树干液流对环境的响应. 应用生态学报, 2024, 35 (8): 2063- 2072. | |
Lin X W, Guo J B, Han Y M, et al. Responses of sap flow in Larix principis-rupprechtii to environment under different weather conditions. Chinese Journal of Applied Ecology, 2024, 35 (8): 2063- 2072. | |
刘泽彬. 2018. 六盘山坡面华北落叶松林水文影响的时空变化及尺度转换. 北京: 中国林业科学研究院. | |
Liu Z B. 2018. Spatio-temporal variations and scale transition of hydrological impact of Larix principis-ruprechtii plantationon a slope of Liupan mountains, China. Beijing: Chinese of Academy Forestry. [in Chinese] | |
秦颢萍, 刘泽彬, 郭建斌, 等. 环境和冠层结构对华北落叶松林树干液流的影响. 应用生态学报, 2021, 32 (5): 1681- 1689. | |
Qin H P, Liu Z B, Guo J B, et al. Effects of environment and canopy structure on stem sap flow in a Larix principis-rupprechtii plantation. Chinese Journal of Applied Ecology, 2021, 32 (5): 1681- 1689. | |
孙慧珍, 周晓峰, 赵惠勋. 白桦树干液流的动态研究. 生态学报, 2002, 22 (9): 1387- 1391.
doi: 10.3321/j.issn:1000-0933.2002.09.003 |
|
Sun H Z, Zhou X F, Zhao H X. A researches on stem sap flow dynamics of Betula platyphylla. Acta Ecologica Sinica, 2002, 22 (9): 1387- 1391.
doi: 10.3321/j.issn:1000-0933.2002.09.003 |
|
孙嘉敏, 王爱慧. 近120年中国干旱年际变化特征及主要的影响因子. 气候与环境研究, 2024, 29 (6): 681- 694.
doi: 10.3878/j.issn.1006-9585.2024.23114 |
|
Sun J M, Wang A H. Interannual variability and key influencing factors of drought in China over the past 120 years. Climatic and Environmental Research, 2024, 29 (6): 681- 694.
doi: 10.3878/j.issn.1006-9585.2024.23114 |
|
孙 凯, 刘文娟, 裴志永, 等. 沙柳人工林液流速率对土壤供水状况的响应及其影响因素. 浙江农林大学学报, 2025, 42 (1): 163- 174.
doi: 10.11833/j.issn.2095-0756.20240359 |
|
Sun K, Liu W J, Pei Z Y, et al. Response of sap flow rate in Salix psammophila plantation to soil water supply and its influencing factors. Journal of Zhejiang A& F University, 2025, 42 (1): 163- 174.
doi: 10.11833/j.issn.2095-0756.20240359 |
|
万艳芳, 于澎涛, 刘贤德, 等. 祁连山青海云杉树干液流密度的优势度差异. 生态学报, 2017, 37 (9): 3106- 3114. | |
Wan Y F, Yu P T, Liu X D, et al. Variation in sap flow density among levels of tree dominance in Picea crassifolia in the Qilian mountains. Acta Ecologica Sinica, 2017, 37 (9): 3106- 3114. | |
王 彪, 陈立欣, 吴应明, 等. 干旱胁迫下环境与生理因子对晋西黄土区刺槐人工林树干液流的影响. 北京林业大学学报, 2024, 46 (4): 127- 140.
doi: 10.12171/j.1000-1522.20230209 |
|
Wang B, Chen L X, Wu Y M, et al. Impact of environmental and physiological factors during drought stress on sap flow in Robinia pseudoacacia plantations in the loess region of western Shanxi Province of northern China. Journal of Beijing Forestry University, 2024, 46 (4): 127- 140.
doi: 10.12171/j.1000-1522.20230209 |
|
王 鑫, 时晓宁, 任修琳. 2000—2019年北京市降水量时空分布特征研究. 水资源开发与管理, 2023, 9 (1): 23- 27. | |
Wang X, Shi X N, Ren X L. Study on spatial and temporal distribution characteristics of precipitation in Beijing from 2000 to 2019. The Global Seabuckthorn Research and Development, 2023, 9 (1): 23- 27. | |
王 瑛, 刘美君, 杜 盛. 树干液流时滞特征及影响因素研究进展. 应用与环境生物学报, 2023, 29 (2): 507- 514. | |
Wang Y, Liu M J, Du S, et al. Research progress in the characteristics and driving factors of time lags in stem sap flow. Chinese Journal of Applied & Environmental Biology, 2023, 29 (2): 507- 514. | |
王 音, 同小娟, 张劲松, 等. 干旱对栓皮栎人工林碳水通量及其耦合的影响. 植物生态学报, 2024, 48 (9): 1157- 1171. | |
Wang Y, Tong X J, Zhang J S, et. al. Impact of drought on carbon and water fluxes and their coupling in a Quercus variabilis plantation. Chinese Journal of Plant Ecology, 2024, 48 (9): 1157- 1171. | |
夏银华, 章新平, 戴军杰, 等. 亚热带季风区樟树树干液流对降水的响应. 水土保持研究, 2021, 28 (6): 144- 152,161. | |
Xia Y H, Zhang X P, Dai J J, et al. Response of stem sap flow of Cinnamomum camphora to precipitation under different environments in the subtropical monsoon region. Research of Soil and Water Conservation, 2021, 28 (6): 144- 152,161. | |
肖 洋. 2008. 北京山区森林植被对非点源污染的生态调控机理研究. 北京: 北京林业大学. | |
Xiao Y. 2008. Study on the adjustment and control mechanism of forest to nonpoint source pollution in Bejing: mountain area. Beijing: Beijing Forestry University. [in Chinese] | |
徐程扬, 张 华, 贾忠奎, 等. 林分密度和立地类型对北京山区侧柏人工林根系的影响. 北京林业大学学报, 2007, 29 (4): 95- 99.
doi: 10.3321/j.issn:1000-1522.2007.04.022 |
|
Xu C Y, Zhang H, Jia Z K, et al. Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area. Journal of Beijing Forestry University, 2007, 29 (4): 95- 99.
doi: 10.3321/j.issn:1000-1522.2007.04.022 |
|
许庭毓, 牛 香, 王 兵, 等. 不同土壤水分条件下杉木种源树干液流特征对气象因子的响应. 中国水土保持科学, 2023, 21 (5): 99- 105. | |
Xu T Y, Niu X, Wang B, et al. Responses of sap flow characteristics under different Chinese fir provenances to meteorological factors under different soil moisture conditions. Science of Soil and Water Conservation, 2023, 21 (5): 99- 105. | |
徐先英, 孙保平, 丁国栋, 等. 干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应. 生态学报, 2008, 28 (3): 895- 905.
doi: 10.3321/j.issn:1000-0933.2008.03.002 |
|
Xu X Y, Sun B P, Ding G D, et al. Sap flow patterns of three main sand-fixing shrubs and their responses to environmental factors in desert areas. Acta Ecologica Sinica, 2008, 28 (3): 895- 905.
doi: 10.3321/j.issn:1000-0933.2008.03.002 |
|
于松平, 刘泽彬, 郭建斌, 等. 六盘山华北落叶松林分蒸腾特征及其影响因素. 南京林业大学学报(自然科学版), 2021, 45 (1): 131- 140. | |
Yu S P, Liu Z B, Guo J B, et al. Stand transpiration characteristics of Larix principis-rupprechtii plantation and their influencing factors in Liupan mountain. Journal of Nanjing Forestry University(Natural Science Edition), 2021, 45 (1): 131- 140. | |
张 林, 齐 实, 周 飘, 等. 北京山区侧柏林下草本植物多样性的影响因素分析. 草地学报, 2022, 30 (8): 2199- 2206. | |
Zhang L, Qi S, Zhou P, et al. Analysis of influencing factors on the understory herbaceous plant diversity of Platycladus orientalis forest in Beijing mountainous areas. Acta Agrestia Sinica, 2022, 30 (8): 2199- 2206. | |
张 潇, 武娟娟, 贾国栋, 等. 降水控制对侧柏液流变化特征及其水分来源的影响. 植物生态学报, 2023, 47 (11): 1585- 1599.
doi: 10.17521/cjpe.2022.0244 |
|
Zhang X, Wu J J, Jia G D, et al. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis. Chinese Journal of Plant Ecology, 2023, 47 (11): 1585- 1599.
doi: 10.17521/cjpe.2022.0244 |
|
Arthur G, Lukas B, Elham F R, et al. Drought reduces water uptake in beech from the drying topsoil, but no compensatory uptake occurs from deeper soil layers. The New Phytologist, 2021, 233 (1): 194- 206. | |
Cermak J, Kucera J, Nadezhdina N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 2004, 18 (5): 529- 546.
doi: 10.1007/s00468-004-0339-6 |
|
Chen S, Wei W, Huang Y. Biophysical controls on canopy transpiration of Pinus tabulaeformis under different soil moisture conditions in the loess plateau of China. Journal of Hydrology, 2024, 631, 130799.
doi: 10.1016/j.jhydrol.2024.130799 |
|
Chen Z C, Liu S R, Lu H B, et al. Interaction of stomatal behaviour and vulnerability to xylem cavitation determines the drought response of three temperate tree species. Annals of Botany Plants, 2019, 11 (5): plz058. | |
Hong L, Guo J B, Liu Z B, et al. Time-lag effect between sap flow and environmental factors of Larix principis-rupprechtii Mayr. Forests, 2019, 10 (11): 971- 971.
doi: 10.3390/f10110971 |
|
Kathy S, Vandegehuchte M V, Roberto T, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiology, 2015, 35 (4): 341- 345.
doi: 10.1093/treephys/tpv033 |
|
Li J M, Yu P T, Wan Y F, et al. The differential responses of tree transpiration to seasonal drought among competitive pressures in a larch plantation of northwest China. Agricultural and Forest Meteorology, 2023, 336, 109468.
doi: 10.1016/j.agrformet.2023.109468 |
|
Liu Z B, Wang Y H, Tian A, et al. Modeling the response of daily evapotranspiration and its components of a larch plantation to the variation of weather, soil moisture, and canopy leaf area index. Journal of Geophysical Research: Atmospheres, 2018, 123 (14): 7354- 7374.
doi: 10.1029/2018JD028384 |
|
Liu Z Q, Liu Q Q, Wei Z J, et al. Partitioning tree water usage into storage and transpiration in a mixed forest. Forest Ecosystems, 2021, 8 (1): 72.
doi: 10.1186/s40663-021-00353-5 |
|
Ma J Y, Jia X, Zha T S, et al. 2019. Ecosystem water use efficiency in a young plantation in northern China and its relationship to drought. Agricultural and Forest Meteorology, 275, 1−10. | |
Meinzer F C, Hinckley T M, Ceulemans R. Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant Cell and Environment, 1997, 20 (10): 1301- 1308.
doi: 10.1046/j.1365-3040.1997.d01-18.x |
|
Tang Y K, Wu X, Chen Y M. Sap flow characteristics and physiological adjustments of two dominant tree species in pure and mixed plantations in the semi-arid loess plateau of China. Journal of Arid Land, 2018, 10 (6): 833- 849.
doi: 10.1007/s40333-018-0027-9 |
|
Wan Y F, Yu P T, Wang Y H, et al. The variation in water consumption by transpiration of Qinghai Spruce among canopy layers in the Qilian mountains, Northwestern China. Forests, 2020, 11 (8): 845.
doi: 10.3390/f11080845 |
|
Wang L, Liu Z B, Guo J B, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture. Forest Ecology and Management, 2021, 481, 118749.
doi: 10.1016/j.foreco.2020.118749 |
|
Wang L, Wang Q J, Wei S P, et al. Soil desiccation for loess soils on natural and regrown areas. Forest Ecology and Management, 2008, 255 (7): 2467- 2477.
doi: 10.1016/j.foreco.2008.01.006 |
|
Yu Y P, Yu P T, Wang Y T, et al. Natural revegetation has dominated annual runoff reduction since the grain for green program began in the Jing river basin, northwest China. Journal of Hydrology, 2023, 625, 129978.
doi: 10.1016/j.jhydrol.2023.129978 |
|
Zhang W H, Lu Z J. A study on the biological and ecological property and geographical distribution of Quercus variabilis population. Acta Botanica Boreali-occidentalia Sinica, 2002, 22 (5): 1093- 1101. | |
Zhang X, Yu X X, Ding B B, et al. 2022. Water storage and use by Platycladus orientalis under different rainfall conditions in the rocky mountainous area of northern China. Forests, 13(11): 1761. |
[1] | 韩新生,许浩,蔡进军,董立国,郭永忠,王月玲,万海霞,安钰. 宁夏黄土区稀疏带状山杏人工林土壤湿度动态与影响因素[J]. 林业科学, 2024, 60(4): 79-90. |
[2] | 刘子赫,贾国栋,刘自强,邓文平. 北京山区侧柏用水来源随水分条件变化的多时间尺度[J]. 林业科学, 2022, 58(3): 40-47. |
[3] | 荆小院,闫玮华,刘红霞,许胜利,靳嵘,高茹,宗世祥,张金桐. 明纹侧柏松毛虫成虫羽化及生殖行为[J]. 林业科学, 2022, 58(3): 79-85. |
[4] | 韩新生, 王彦辉, 李振华, 王艳兵, 于澎涛, 熊伟. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子[J]. 林业科学, 2019, 55(9): 11-21. |
[5] | 杜常健, 孙佳成, 陈炜, 纪敬, 江泽平, 史胜青. 侧柏古树实生树和嫁接树的扦插生理和解剖特性比较[J]. 林业科学, 2019, 55(9): 41-49. |
[6] | 巫志龙, 周成军, 周新年, 刘富万, 朱奇雄, 黄金湧, 陈文. 不同强度采伐5年后杉阔混交人工林土壤呼吸速率差异[J]. 林业科学, 2019, 55(6): 142-149. |
[7] | 刘自强, 余新晓, 贾国栋, 李瀚之, 路伟伟, 侯贵荣. 北京山区侧柏利用水分来源对降水的响应[J]. 林业科学, 2018, 54(7): 16-23. |
[8] | 代永欣, 王林, 万贤崇. 遮荫和环剥对刺槐、侧柏苗木碳素分配和水力学特性的影响[J]. 林业科学, 2017, 53(7): 37-44. |
[9] | 刘自强, 余新晓, 贾国栋, 贾剑波, 娄源海, 张坤. 北京山区侧柏和栓皮栎的水分利用特征[J]. 林业科学, 2016, 52(9): 22-30. |
[10] | 李彦华, 张文辉, 申家朋, 周建云, 郭有燕. 甘肃黄土丘陵区侧柏人工幼林的碳密度及分配特征[J]. 林业科学, 2015, 51(6): 1-8. |
[11] | 徐湘婷, 王林, 黄平, 万宇轩, 李建中, 万贤崇. 风和光照对侧柏、栓皮栎生长和形态建成的影响[J]. 林业科学, 2014, 50(7): 164-168. |
[12] | 刘方春, 邢尚军, 马海林, 杜振宇, 马丙尧. 干旱胁迫下植物根际促生细菌对侧柏生长及生理生态特征的影响[J]. 林业科学, 2014, 50(6): 67-73. |
[13] | 周芙蓉, 王进鑫, 杨楠, 张青, 邹朋. 干旱和铅交互作用对侧柏幼苗生长及抗氧化酶活性的影响[J]. 林业科学, 2013, 49(6): 172-177. |
[14] | 汪金松;范娟;赵秀海;夏富才;倪瑞强;金冠一;郭依秋;李化山. 太岳山油松人工林土壤呼吸组分及其影响因子[J]. , 2013, 49(2): 1-7. |
[15] | 王文杰;孙伟;邱岭;祖元刚;刘伟. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J]. 林业科学, 2012, 48(1): 77-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||