|
樊 星, 樊校年, 刘兆旭, 等. 阿勒泰地区地闪时空分布特征及影响因素分析. 成都信息工程大学学报, 2024, 39 (4): 481- 487.
|
|
Fan X, Fan X N, Liu Z X, et al. Temporal and spatial distribution characteristics of cloud-to-ground lightning activity in Aletai region and influencing factors. Journal of Chengdu University of Information Technology, 2024, 39 (4): 481- 487.
|
|
郭润霞, 王迎春, 张文龙, 等. 基于VLF/LF三维闪电监测定位系统的北京闪电特征分析. 热带气象学报, 2018, 34 (3): 393- 400.
|
|
Guo R X, Wang Y C, Zhang W L, et al. Analysis of lightning characteristics in Beijing based on VLF/LF 3D lightning location monitoring system. Journal of Tropical Meteorology, 2018, 34 (3): 393- 400.
|
|
侯 波, 杨艳蓉, 李盈萱, 等. 气候变化下中国西南地区雷电活动随地形因子的动态变化. 气象与环境科学, 2024, 47 (3): 23- 29.
|
|
Hou B, Yang Y R, Li Y X, et al. Dynamic variation of lightning activity in southwest China with topographic factors under the background of climate change. Meteorological and Environmental Sciences, 2024, 47 (3): 23- 29.
|
|
李思然, 高 宇. 2019年兴安盟闪电活动时空分布特征. 农业灾害研究, 2020, 10 (7): 40- 41,44.
|
|
Li S R, Gao Y. Analysis of temporal and spatial distribution characteristics of lightning activities in Hinggan league in 2019. Journal of Agricultural Catastrophology, 2020, 10 (7): 40- 41,44.
|
|
李伟克, 舒立福, 苑尚博, 等. 基于VLF/LF三维闪电定位系统的大兴安岭闪电时空分布特征. 林业科学, 2022, 58 (11): 21- 30.
doi: 10.11707/j.1001-7488.20221103
|
|
Li W K, Shu L F, Yuan S B, et al. Temporal and spatial characteristics of lightning in Daxing’an Mountains based on VLF /LF 3D lightning location system. Scientia Silvae Sinicae, 2022, 58 (11): 21- 30.
doi: 10.11707/j.1001-7488.20221103
|
|
李岩松, 杨艳蓉, 张文艺, 等. 西南地区不同下垫面雷电活动特征与森林雷击火的关系. 南京林业大学学报(自然科学版), 2024, 48 (3): 219- 228.
|
|
Li Y S, Yang Y R, Zhang W Y, et al. Relationship between characteristics of lightning activity on different underlying surface and forest lightning fire in southwest China. Journal of Nanjing Forestry University(Natural Sciences Edition), 2024, 48 (3): 219- 228.
|
|
罗可妮, 张 琨. 基于三维闪电的凉山州森林火灾高危区雷电活动特征分析. 西昌学院学报(自然科学版), 2022, 36 (2): 71- 73,108.
|
|
Luo K N, Zhang K. Analysis of lightning activity characteristics in high risk area of forest fire in Liangshan Prefecture based on three-dimensional lightning dada. Journal of Xichang University(Natural Science Edition), 2022, 36 (2): 71- 73,108.
|
|
彭玉娴, 田晓瑞, 李思薇, 等. 雷击火发生预报的研究进展. 陆地生态系统与保护学报, 2024, 4 (2): 65- 70.
|
|
Peng Y X, Tian X R, Li S W, et al. A review of recent advances in lightning fire prediction. Terrestrial Ecosystem and Conservation, 2024, 4 (2): 65- 70.
|
|
彭仲伦, 李 兵, 余 磊, 等. 凉山州闪电活动特征分析. 高原山地气象研究, 2016, 36 (1): 75- 80.
|
|
Peng Z L, Li B, Yu L, et al. Analysis of lightning activity in Liangshan. Plateau and Mountain Meteorology Research, 2016, 36 (1): 75- 80.
|
|
陶心怡, 赵 阳, 谢屹然, 等. 基于WWLLN的云南闪电活动特征及其成因研究. 电瓷避雷器, 2021, (5): 100- 106.
|
|
Tao X Y, Zhao Y, Xie Y R, et al. Characteristics and causes of lightning activity in Yunnan Province based on WWLLN. Insulators and Surge Arresters, 2021, (5): 100- 106.
|
|
王 娟, 湛 芸. 2009—2012年中国闪电分布特征分析. 气象, 2015, 41 (2): 160- 170.
|
|
Wang J, Chen Y. Analysis of the 2009—2012 lightning distribution characteristics in China. Meteorological Monthly, 2015, 41 (2): 160- 170.
|
|
王基鑫. 2016. 全球闪电活动时空分布特征及其与大气环境因素的关系. 安徽: 中国科学技术大学.
|
|
Wang J X. 2016. Characteristics of global lighting activities and its relationship with the atmospheric environment parameters. Anhui: University of Science and Technology of China. [in Chinese]
|
|
魏 庆, 周 威, 谢亚雄, 等. 2023. 四川省闪电与温湿度的关系研究. 气象水文海洋仪器, 40(4): 40−44.
|
|
Wei Q, Zhou W, Xie Y X, et al. 2023. Study on the relationship between lightning and temperature and humidity in Sichuan. Meteorological, Hydrological and Marine Instruments, 40(4): 40−44. [in Chinese]
|
|
谢连妮, 吴 双, 韩书新, 等. 基于风云四号卫星LMI数据的黑龙江省闪电活动特征研究. 自然灾害学报, 2023, 32 (3): 160- 168.
|
|
Xie L N, Wu S, Han S X, et al. Analysis of lightning activity characteristics based on LMl data of FY-4 satellite in Heilongjiang Province. Journal of Natural Disasters, 2023, 32 (3): 160- 168.
|
|
辛雪琪. 2019. 我国复杂地形区域雷暴特征及云地闪时空特征分析. 南京: 南京信息工程大学.
|
|
Xin X Q. 2019. Analysis of thunderstorm characteristics and spatio-temporal characteristics of ground flash in complex terrain regions in China. Nanjing: Nanjing University of Information Science and Technology. [in Chinese]
|
|
徐鸣一. 2022. 中国地区的闪电活动时空变化特征及其成因研究. 南京: 南京信息工程大学.
|
|
Xu M Y. 2022. Temporal and spatial variation of lightning activity in China and its causes. Nanjing: Nanjing University of Information Science and Technology. [in Chinese]
|
|
郑 栋, 张义军, 孟 青, 等. 一次雹暴的闪电特征和电荷结构演变研究. 气象学报, 2010, 68 (2): 248- 263.
|
|
Zheng D, Zhang Y J, Meng Q, et al. Total lightning characteristics and the electric structures evolution in a hailstorm. Acta Meteorologica Sinica, 2010, 68 (2): 248- 263.
|
|
Abdollahi M, Dewan A, Hassan Q K. Applicability of remote sensing-based vegetation water content in modeling lightning-caused forest fire occurrences. ISPRS International Journal of Geo-Information, 2019, 8 (3): 143.
doi: 10.3390/ijgi8030143
|
|
Ager A A, Preisler H K, Arca B, et al. Wildfire risk estimation in the Mediterranean area. Environmetrics, 2014, 25 (6): 384- 396.
doi: 10.1002/env.2269
|
|
Chen Y, Romps D M, Seeley J T, et al. Future increases in Arctic lightning and fire risk for permafrost carbon. Nature Climate Change, 2021, 11, 404- 410.
doi: 10.1038/s41558-021-01011-y
|
|
Dissing D, Verbyla D L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Canadian Journal of Forest Research, 2003, 33 (5): 770- 782.
doi: 10.1139/x02-214
|
|
Fang K Y, Yao Q C, Guo Z T, et al. ENSO modulates wildfire activity in China. Nature Communications, 2021, 12, 1764.
doi: 10.1038/s41467-021-21988-6
|
|
Giannaros T M, Papavasileiou G, Lagouvardos K, et al. Meteorological analysis of the 2021 extreme wildfires in Greece: lessons learned and implications for early warning of the potential for pyroconvection. Atmosphere, 2022, 13 (3): 475.
doi: 10.3390/atmos13030475
|
|
Hessilt T D, Abatzoglou J T, Chen Y, et al. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environmental Research Letters, 2022, 17 (5): 054008.
doi: 10.1088/1748-9326/ac6311
|
|
Holle R L. Diurnal variations of NLDN-reported cloud-to-ground lightning in the United States. Monthly Weather Review, 2014, 142 (3): 1037- 1052.
doi: 10.1175/MWR-D-13-00121.1
|
|
Hong R C, Liang Y, Wang J, et al. Adaptation of the coniferous forests to natural fire disturbances in the Altai Mountains, Xinjiang, China. Forests, 2024, 15 (2): 296.
doi: 10.3390/f15020296
|
|
Ivanov V A, Ponomarev E I, Ivanova G A, et al. Lightning and forest fires under modern climatic conditions of central Siberia. Russian Meteorology and Hydrology, 2023, 48 (7): 630- 638.
doi: 10.3103/S1068373923070105
|
|
Kilinc M, Beringer J. The spatial and temporal distribution of lightning strikes and their relationship with vegetation type, elevation, and fire scars in the northern territory. Journal of Climate, 2007, 20 (7): 1161- 1173.
doi: 10.1175/JCLI4039.1
|
|
Kotroni V, Lagouvardos K. Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. Journal of Geophysical Research: Atmospheres, 2008, 113 (D21): 1- 7.
|
|
Krause A, Kloster S, Wilkenskjeld S, et al. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. Journal of Geophysical Research: Biogeosciences, 2014, 119 (3): 312- 322.
doi: 10.1002/2013JG002502
|
|
Kumar S, Siingh D, Singh R P, et al. The influence of meteorological parameters and atmospheric pollutants on lightning, rainfall, and normalized difference vegetation index in the Indo-Gangetic Plain. International Journal of Remote Sensing, 2016, 37 (1): 53- 77.
doi: 10.1080/01431161.2015.1117680
|
|
Lopez P. A lightning parameterization for the ECMWF integrated forecasting system. Monthly Weather Review, 2016, 144 (9): 3057- 3075.
doi: 10.1175/MWR-D-16-0026.1
|
|
Müller M M, Vacik H. 2017. Characteristics of lightnings igniting forest fires in austria. Agricultural and Forest Meteorology, 240–241: 26−34.
|
|
Nicora M, Mestriner D, Brignone M, et al. A 10-year study on the lightning activity in Italy using data from the SIRF network. Atmospheric Research, 2021, 256, 105552.
doi: 10.1016/j.atmosres.2021.105552
|
|
Qie K, Tian W S, Wang W K, et al. Regional trends of lightning activity in the tropics and subtropics. Atmospheric Research, 2020, 242, 104960.
doi: 10.1016/j.atmosres.2020.104960
|
|
Schultz C J, Nauslar N J, Wachter J B, et al. Spatial, temporal, and electrical characteristics of lightning in reported lightning-initiated wildfire events. Fire, 2019, 2 (2): 18.
doi: 10.3390/fire2020018
|
|
Schumacher V, Setzer A, Saba M M F, et al. Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning. Agricultural and Forest Meteorology, 2022, 312, 108723.
doi: 10.1016/j.agrformet.2021.108723
|
|
Vant-Hull B, Koshak W. Spatial structure of lightning and precipitation associated with lightning-caused wildfires in the central to eastern United States. Fire, 2023, 6 (7): 262.
doi: 10.3390/fire6070262
|
|
Veraverbeke S, Rogers B, Goulden M, et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 2017, 7, 529- 534.
doi: 10.1038/nclimate3329
|
|
Wang D P, Guan D B, Zhu S P, et al. Economic footprint of California wildfires in 2018. Nature Sustainability, 2021, 4, 252- 260.
|