林业科学 ›› 2024, Vol. 60 ›› Issue (6): 13-24.doi: 10.11707/j.1001-7488.LYKX20220717
收稿日期:
2022-10-25
出版日期:
2024-06-25
发布日期:
2024-07-16
通讯作者:
赵洋毅
E-mail:xiaoyun_tu66@126.com
基金资助:
Xiaoyun Tu(),Yangyi Zhao*,Keqin Wang,Tiantian Ouyang,Zhicheng Li,Xianyue He
Received:
2022-10-25
Online:
2024-06-25
Published:
2024-07-16
Contact:
Yangyi Zhao
E-mail:xiaoyun_tu66@126.com
摘要:
目的: 探究典型中亚热带区不同演替阶段森林群落土壤体积含水量的时间(年、干湿季)与空间(土层)异质性特征,分析森林群落演替进程中引起土壤不同土层体积含水量异质性的主要因素,为区域林水资源管理及森林生态系统服务功能评估提供基础数据。方法: 选取云南玉溪磨盘山的典型森林,包括演替初期的云南松林( PF)、演替中期的云南松阔叶混交林( PBMF)和顶级群落常绿阔叶林( EBF),应用时域反射法与经典统计学分析法,于2021年5月至2022年4月测量样地0~60 cm土层内每10 cm土层的土壤体积含水量,探析森林土壤水分的时空异质性及影响因素。结果: 1)在气候干湿分明、干旱频繁的中亚热带地区,森林土壤储水量在时间上呈中等变异且与降水变化趋势一致。随演替进行,年均土壤储水量为EBF最大,MPBF次之,PF最小。EBF与PBMF全年土壤储水量较PF分别平均增加31.24%和15.22%。2)3种演替阶段森林的土壤体积含水量均随土层加深而增大,0~10 cm土层土壤体积含水量平均比50~60 cm土层低45.22%,土壤体积含水量变异系数与土壤体积含水量呈显著负相关(P<0.05)。3)土壤体积含水量与林分密度、树高、胸径、土壤密度、土壤砂粒含量均极显著负相关(P<0.01),与叶面积指数、郁闭度、土壤孔隙度、黏粒含量、粉粒含量、有机质含量和有机碳含量均极显著正相关(P<0.01),叶面积指数、土壤孔隙度、粉粒含量、有机质含量和有机碳含量与土壤含水量的关联程度最高。结论: 云南玉溪磨盘山不同演替阶段森林的年、干湿季和0~60 cm土层的土壤体积含水量变异系数均值分别为19.86%、17.31%、14.06%和20.58%,均表现出中等强度异质性,随演替进行森林土壤储水能力不断增强。叶面积指数、土壤孔隙度、砂粒含量、有机质含量和有机碳含量是土壤不同土层体积含水量产生空间异质性的主导因素。
中图分类号:
涂晓云,赵洋毅,王克勤,欧阳田甜,李志成,和娴越. 中亚热带不同演替阶段森林土壤水分时空异质性[J]. 林业科学, 2024, 60(6): 13-24.
Xiaoyun Tu,Yangyi Zhao,Keqin Wang,Tiantian Ouyang,Zhicheng Li,Xianyue He. Spatial and Temporal Heterogeneity of Soil Moisture in Forests at Different Successional Stages in the Middle Subtropics of China[J]. Scientia Silvae Sinicae, 2024, 60(6): 13-24.
表1
研究样地基本概况"
样地 Plot | 立地条件Land conditions | 林分特征 Stand characteristics | ||||||||
土壤类型 Soil type | 土壤有机质 含量Soil organic matter content / (g?kg?1) | 海拔 Altitude /m | 坡度 Slope /(°) | 坡向 Aspect | 起源 Origin | 叶面积指数 Leaf area index | 郁闭度 Canopy density | 密度 Density/hm?2 | ||
常绿阔叶林 Evergreen broadleaf forest | 棕黄壤 Brown yellow soil | 69.83 | 2 258.8~2 497.2 | 13~26 | 西南 Southwest | 天然林 Natural forest | 3.93 | 0.92 | 2 175 | |
云南松阔叶混交林 P. yunnanensis broadleaf mixed forest | 棕黄壤 Brown yellow soil | 47.93 | 2 157.2~2 292.1 | 11~15 | 西南 Southwest | 天然林 Natural forest | 3.44 | 0.81 | 2 308 | |
云南松林 P. yunnanensis forest | 棕黄壤 Brown yellow soil | 27.45 | 2 158.0~2 236.6 | 13~18 | 西北 Northwest | 天然林 Natural forest | 2.99 | 0.74 | 2 312 |
表2
演替林分0~60 cm土壤物理性质"
林分 Forest | 土层深度 Soil depth/ cm | 土壤密度 Soil density/ ( g?cm?3 ) | 毛管孔隙度 Capillary porosity (%) | 非毛管孔隙度 Non-capillary porosity (%) | pH | 黏粒含量 Clay content (%) | 粉粒含量 Silt content (%) | 砂粒含量 Grit content (%) |
云南松林 P. yunnanensis forest | 0~10 | 1.6 | 10.0 | 51.3 | 4.0 | 8.1 | 32.5 | 59.3 |
10~20 | 1.5 | 10.4 | 51.2 | 3.9 | 7.0 | 32.4 | 60.6 | |
20~30 | 1.6 | 9.1 | 47.5 | 4.0 | 4.9 | 27.1 | 68.1 | |
30~40 | 1.7 | 8.0 | 44.0 | 4.1 | 4.7 | 23.6 | 71.7 | |
40~50 | 1.7 | 8.0 | 43.9 | 4.1 | 6.0 | 28.6 | 65.5 | |
50~60 | 1.7 | 8.0 | 40.2 | 4.1 | 5.5 | 26.8 | 67.6 | |
云南松阔叶混交林 P.yunnanensis broadleaf mixed forest | 0~10 | 1.3 | 15.5 | 53.1 | 4.3 | 5.0 | 26.6 | 68.4 |
10~20 | 1.4 | 15.9 | 51.1 | 4.4 | 6.8 | 32.9 | 60.3 | |
20~30 | 1.4 | 12.7 | 48.6 | 4.5 | 9.3 | 39.5 | 51.2 | |
30~40 | 1.6 | 12.1 | 49.0 | 4.5 | 10.3 | 39.8 | 49.9 | |
40~50 | 1.7 | 11.5 | 48.3 | 4.6 | 14.4 | 44.0 | 41.6 | |
50~60 | 1.7 | 10.3 | 47.3 | 4.5 | 16.2 | 43.2 | 40.6 | |
常绿阔叶林 Evergreen broadleaf forest | 0~10 | 1.1 | 16.8 | 67.0 | 3.9 | 6.1 | 28.8 | 65.1 |
10~20 | 1.2 | 13.3 | 58.8 | 4.2 | 8.1 | 34.4 | 57.5 | |
20~30 | 1.2 | 13.2 | 60.9 | 4.4 | 12.5 | 42.7 | 44.8 | |
30~40 | 1.2 | 11.9 | 56.8 | 4.6 | 10.3 | 35.7 | 54.0 | |
40~50 | 1.2 | 12.0 | 52.4 | 4.5 | 26.0 | 49.1 | 24.9 | |
50~60 | 1.3 | 12.0 | 51.8 | 4.4 | 23.2 | 50.3 | 26.4 |
表3
各演替阶段森林群落各土层土壤体积含水量"
林分 Forest | 土层 Soil layer/cm | 最小值 Minimum value (%) | 最大值 Maximum value (%) | 平均值 Mean value (%) | 方差 Standard variance (%) | 偏度 Partial degrees |
常绿阔叶林 Evergreen broadleaf forest | 0?10 | 13.21 | 26.91 | 18.02 | 19.68 | 0.70 |
10?20 | 15.80 | 30.54 | 21.78 | 21.65 | 0.48 | |
20?30 | 18.58 | 32.01 | 24.42 | 16.12 | 0.49 | |
30?40 | 20.92 | 34.50 | 25.84 | 17.59 | 0.86 | |
40?50 | 24.63 | 39.00 | 30.15 | 17.87 | 0.79 | |
50?60 | 29.56 | 43.54 | 35.59 | 19.29 | 0.25 | |
0?60 | 27.21 | |||||
云南松阔叶混交林 P. yunnanensis broadleaf mixed forest | 0?10 | 8.81 | 20.94 | 12.97 | 11.32 | 1.14 |
10?20 | 9.50 | 22.06 | 14.56 | 12.75 | 0.99 | |
20?30 | 14.00 | 24.87 | 18.44 | 15.83 | 0.66 | |
30?40 | 19.02 | 34.27 | 25.52 | 20.01 | 0.48 | |
40?50 | 21.01 | 39.21 | 30.59 | 30.93 | ?0.27 | |
50?60 | 24.54 | 41.81 | 34.55 | 23.28 | ?0.55 | |
0?60 | 25.62 | |||||
云南松林 P. yunnanensis forest | 0?10 | 10.31 | 25.77 | 19.15 | 23.47 | ?0.28 |
10?20 | 9.61 | 22.02 | 17.25 | 15.05 | ?0.73 | |
20?30 | 9.72 | 22.59 | 17.34 | 13.59 | ?0.49 | |
30?40 | 10.30 | 26.32 | 18.32 | 18.23 | 0.02 | |
40?50 | 15.15 | 28.69 | 21.74 | 14.85 | ?0.13 | |
50?60 | 16.91 | 30.21 | 24.89 | 20.64 | ?0.68 | |
0?60 | 20.16 |
表4
各演替阶段森林群落各土层年尺度及干、湿季土壤水分变异性"
演替群落 Successional community | 土层 Soil layer/ cm | 年尺度 Year scale | 湿季Wet season | 干季Dry season | |||||
均方差 Mean square error (%) | 变异系数 Coefficient of variation (%) | 均方差 Mean square error (%) | 变异系数 Coefficient of variation (%) | 均方差 Mean square error (%) | 变异系数 Coefficient of variation (%) | ||||
常绿阔叶林 Evergreen broadleaf forest | 0~10 | 4.44 | 24.62 | 3.51 | 16.37 | 1.80 | 12.29 | ||
10~20 | 4.65 | 21.36 | 3.48 | 13.81 | 2.68 | 14.61 | |||
20~30 | 4.01 | 16.44 | 3.01 | 10.99 | 2.21 | 10.31 | |||
30~40 | 4.19 | 16.23 | 3.61 | 12.49 | 1.99 | 8.70 | |||
40~50 | 4.23 | 14.02 | 3.60 | 10.86 | 2.28 | 8.40 | |||
50~60 | 4.39 | 12.34 | 2.91 | 7.46 | 2.59 | 8.05 | |||
云南松阔叶混交林 P. yunnanensis broadleaf mixed forest | 0~10 | 3.36 | 25.93 | 3.41 | 22.78 | 1.90 | 17.30 | ||
10~20 | 3.57 | 24.51 | 3.84 | 23.13 | 1.86 | 14.85 | |||
20~30 | 3.98 | 21.57 | 4.18 | 20.24 | 2.37 | 14.62 | |||
30~40 | 4.47 | 17.53 | 3.64 | 12.72 | 2.69 | 12.01 | |||
40~50 | 5.56 | 18.18 | 3.59 | 10.42 | 4.49 | 16.79 | |||
50~60 | 4.83 | 13.97 | 2.94 | 7.80 | 4.34 | 13.81 | |||
云南松林 P. yunnanensis forest | 0~10 | 4.84 | 25.30 | 3.33 | 14.97 | 4.19 | 26.12 | ||
10~20 | 3.88 | 22.49 | 2.22 | 11.35 | 3.88 | 26.01 | |||
20~30 | 3.69 | 21.26 | 2.32 | 11.70 | 3.07 | 20.70 | |||
30~40 | 4.27 | 23.31 | 3.48 | 16.61 | 3.34 | 21.33 | |||
40~50 | 3.85 | 17.73 | 3.33 | 14.26 | 3.91 | 19.45 | |||
50~60 | 4.54 | 18.25 | 3.08 | 11.15 | 4.31 | 19.42 |
图6
各演替阶段森林群落的林分与土壤理化指标变异特征 a:土壤化学性质Soil chemical properties; b:土壤物理性质Soil physical properties; c:林分特征Stand characteristics.“工型线”表示指标的变异程度The “I-line” indicates the degree of variation in the metric. SOMC:土壤有机质含量Soil organic matter content; SOCC:土壤有机碳含量Soil organic carbon content; TP:总孔隙度Total porosity; NCP:非毛管孔隙度Non-capillary porosity; CP:毛管孔隙度Capillary porosity; GC:砂粒含量Grit content;SC:粉粒含量Silt content; CC:黏粒含量Clay content; SLD:土壤密度Soil density; RD:根系密度Root density; LAI:叶面积指数Leaf area index; HT:树高Tree height; DBH:胸径Diameter at breast height; DD:郁闭度Depressed density; SD:林分密度Stand density. EBF:常绿阔叶林Evergreen broadleaf forest; PBMF:云南松阔叶混交林 P. yunnanensis broadleaf mixed forest; PF:云南松林P. yunnanensis forest."
表5
不同土层土壤体积含水量与林分特征和土壤理化性质的相关性①"
观测指标Observation index | 土壤体积含水量 Soil volumetric water content | ||
0~60 cm | 0~30 cm | 30~60 cm | |
根系密度Root density | 0.13 | 0.53** | 0.02 |
叶面积指数Leaf area index | 0.81** | 0.65** | 0.78** |
林分密度Stand density | ?0.49** | ?0.50** | ?0.39* |
郁闭度Canopy density | 0.54** | 0.37* | 0.58** |
树高Tree height | ?0.55** | ?0.35* | ?0.60** |
胸径Diameter at breast height | ?0.54** | ?0.28 | ?0.65** |
土壤密度Soil density | ?0.54** | ?0.29 | ?0.45** |
黏粒含量Clay content | 0.55** | ?0.13 | ?0.59** |
粉粒含量Silt content | 0.52** | ?0.32 | ?0.45** |
砂粒含量Grit content | ?0.53** | 0.26 | 0.52** |
非毛管孔隙度Non-capillary porosity | 0.48** | 0.02 | 0.70** |
毛管孔隙度Capillary porosity | 0.53** | 0.48** | 0.62** |
总孔隙度Total porosity | 0.55** | 0.39* | 0.66** |
土壤有机碳含量Soil organic carbon content | 0.55** | 0.32 | 0.61** |
土壤有机质含量Soil organic matter content | 0.55** | 0.32 | 0.61** |
表6
林分特征和土壤理化性质与土壤体积含水量的灰色关联度"
评价项 Evaluation items | 土壤体积含水量Soil volumetric water content | |||||||
0~60 cm | 0~30 cm | 30~60 cm | ||||||
关联度Relevancy | 排名Ranking | 关联度Relevancy | 排名Ranking | 关联度Relevancy | 排名Ranking | |||
根系密度Root density | 0.63 | 8 | 0.75 | 2 | 0.52 | 15 | ||
叶面积指数Leaf area index | 1.00 | 1 | 0.68 | 5 | 0.85 | 4 | ||
林分密度Stand density | 0.64 | 7 | 0.62 | 7 | 0.72 | 6 | ||
郁闭度Canopy density | 0.89 | 3 | 0.69 | 4 | 0.84 | 5 | ||
树高Tree height | 0.53 | 14 | 0.46 | 15 | 0.61 | 11 | ||
胸径Diameter at breast height | 0.61 | 9 | 0.55 | 9 | 0.66 | 9 | ||
土壤密度Soil density | 0.53 | 13 | 0.52 | 12 | 0.67 | 8 | ||
黏粒含量Clay content | 0.57 | 10 | 0.53 | 11 | 0.53 | 14 | ||
粉粒含量Silt content | 0.81 | 5 | 0.57 | 8 | 0.64 | 10 | ||
砂粒含量Grit content | 0.51 | 15 | 0.67 | 6 | 0.69 | 7 | ||
毛管孔隙度Capillary porosity | 0.88 | 4 | 0.55 | 10 | 0.86 | 3 | ||
非毛管孔隙度Non-capillary porosity | 0.72 | 6 | 0.78 | 1 | 0.94 | 1 | ||
总孔隙度Total porosity | 0.95 | 2 | 0.71 | 3 | 0.88 | 2 | ||
土壤有机质含量Soil organic matter content | 0.56 | 11 | 0.46 | 13 | 0.58 | 12 | ||
土壤有机碳含量Soil organic carbon content | 0.56 | 12 | 0.46 | 14 | 0.58 | 13 |
白晨赟, 田涵洋, 乔江波, 等. 黄土塬区土地利用方式对土壤主要理化性质的影响. 干旱地区农业研究, 2022, 40 (4): 223- 229.
doi: 10.7606/j.issn.1000-7601.2022.04.25 |
|
Bai C Y, Tian H Y, Qiao J B, et al. Effects of land use patterns on soil physical and chemical properties in the Loess Platea. Agricultural Research in the Arid Areas, 2022, 40 (4): 223- 229.
doi: 10.7606/j.issn.1000-7601.2022.04.25 |
|
白一茹, 邵明安. 黄土高原雨养区坡面土壤蓄水量时间稳定性. 农业工程学报, 2011, 27 (7): 45- 50.
doi: 10.3969/j.issn.1002-6819.2011.07.008 |
|
Bai Y R, Shao M A. Temporal stability of soil water storage on slope in rain−fed region of Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27 (7): 45- 50.
doi: 10.3969/j.issn.1002-6819.2011.07.008 |
|
常清青, 何洪林, 牛忠恩, 等. 中国典型森林生态系统土壤水分时空分异及其影响因素. 生态学报, 2021, 41 (2): 490- 502. | |
Chang Q Q, He H L, Niu Z E, et al. Spatio−temporal variation of soil moisture and its influencing factors in Chinese typical forest ecosystems. Acta Ecologica Sinica, 2021, 41 (2): 490- 502. | |
杜志强, 杨志远, 吴 艳, 等. 煤层含气量评价中灰色关联分析与相关分析法对比. 煤田地质与勘探, 2012, 40 (1): 20- 23,28.
doi: 10.3969/j.issn.1001-1986.2012.01.005 |
|
Du Z Q, Yang Z Y, Wu Y, et al. The association analysis of grey incidence and the correlation analysis in evaluation of influence factors of coalbed methane content. Coal Geology & Exploration, 2012, 40 (1): 20- 23,28.
doi: 10.3969/j.issn.1001-1986.2012.01.005 |
|
段亮亮, 满秀玲, 刘玉杰, 等. 大兴安岭北部天然落叶松林土壤水分空间变异及影响因子分析. 北京林业大学学报, 2014, 36 (4): 36- 41. | |
Duan L L, Man X L, Liu Y J, et al. Soil moisture spatial variability and affecting factors of natural larch forest in northern region of Daxinganling Mountains of northeastern China. Journal of Beijing Forestry University, 2014, 36 (4): 36- 41. | |
郭明先. 2019. 降水和植被对红壤坡地干湿季土壤水分动态分布的影响. 武汉: 华中农业大学. | |
Guo M X. 2019. The effect of rainfall and vegetation on dynamic distribution of soil moisture during dry-wet season in a red soil slope. Wuhan: Huazhong Agricultural University. [in Chinese] | |
郭艳菊, 马晓静, 许爱云, 等. 宁夏东部风沙区沙化草地土壤水分和植被的空间特征. 生态学报, 2022, 42 (4): 1571- 1581. | |
Guo Y J, Ma X J, Xu A Y, et al. Spatial characteristics of soil moisture and vegetation in desertification grassland in eastern Ningxia sand-wind area, China. Acta Ecologica Sinica, 2022, 42 (4): 1571- 1581. | |
韩姣姣, 段 旭, 赵洋毅, 等. 干热河谷不同土地利用类型坡面土壤水分时空变异. 水土保持学报, 2017, 31 (2): 130- 136. | |
Han J J, Duan X, Zhao Y Y, et al. Spatial and temporal variability of soil moisture on sloping lands of different land use types in a dry-hot valley. Journal of Soil and Water Conservation, 2017, 31 (2): 130- 136. | |
黄道友, 王克林, 黄 敏, 等. 我国中亚热带典型红壤丘陵区季节性干旱. 生态学报, 2004, 24 (11): 2516- 2523.
doi: 10.3321/j.issn:1000-0933.2004.11.024 |
|
Huang D Y, Wang K L, Huang M, et al. Seasonal drought problems in the red soil hilly region of the middle subtropical zone of China. Acta Ecologica Sinica, 2004, 24 (11): 2516- 2523.
doi: 10.3321/j.issn:1000-0933.2004.11.024 |
|
贾秀红, 曾 毅, 周志翔, 等. 鄂中低丘区不同演替阶段森林凋落物和土壤水文特征. 水土保持学报, 2013, 27 (4): 125- 129. | |
Jia X H, Zeng Y, Zhou Z X, et al. Hydrological characteristics of forest litter and soil in different successional stages in the Hilly region of central Hubei. Journal of Soil and Water Conservation, 2013, 27 (4): 125- 129. | |
李祥东. 2019. 西北干旱区土壤水分时空变异特征及其影响因素研究. 北京: 中国科学院大学. | |
Li X D. 2019. Spatial-temporal variability of soil moisture and influencing factors in northwest arid area of China. Beijing: University of Chinese Academy of Sciences. [in Chinese] | |
刘佩伶, 陈 乐, 刘效东, 等. 鼎湖山不同演替阶段森林土壤水分时空变异研究. 生态学报, 2021, 41 (5): 1798- 1807. | |
Liu P L, Cheng L, Liu X D, et al. Temporal and spatial variability of soil moisture in a forest succession series in Dinghushan. Acta Ecologica Sincia, 2021, 41 (5): 1798- 1807. | |
娄淑兰, 刘目兴, 易 军, 等. 三峡山地不同类型植被和坡位对土壤水文功能的影响. 生态学报, 2019, 39 (13): 4844- 4854. | |
Lou S L, Liu M X, Yi J, et al. Influence of vegetation coverage and topographic position on soil hydrological function in the hillslope of the Three Gorges Area. Acta Ecologica Sincia, 2019, 39 (13): 4844- 4854. | |
秦 洁, 司建华, 贾 冰, 等. 巴丹吉林沙漠植被群落特征与土壤水分关系研究. 干旱区研究, 2021, 38 (1): 207- 222. | |
Qing H, Si J H, Jia B, et al. Study on the relationship between vegetation community characteristics and soil moisture in Badain Jaran Desert. Arid Zone Research, 2021, 38 (1): 207- 222. | |
孙智妍. 2020. 喀斯特坡地植被恢复的土壤水分效应及其影响因素研究. 贵阳: 贵州师范大学. | |
Sun Z Y. 2020. Effects of vegetation restoration on soil moisture on slopes in Karst Area and its influencing factors. Guiyang: Guizhou Normal University. [in Chinese] | |
魏 强, 凌 雷, 柴春山, 等. 甘肃兴隆山森林演替过程中的土壤理化性质. 生态学报, 2012, 32 (15): 4700- 4713.
doi: 10.5846/stxb201111151734 |
|
Wei Q, Ling L, Chai C S, et al. Soil physical and chemical properties in forest succession process in Xinglong mountain of Gansu. Acta Ecologica Sinica, 2012, 32 (15): 4700- 4713.
doi: 10.5846/stxb201111151734 |
|
魏 强, 张广忠, 凌 雷, 等. 甘肃兴隆山主要森林类型凋落物及土壤层的蓄水功能. 南京林业大学学报(自然科学版), 2013, 37 (2): 78- 84. | |
Wei Q, Zhang G Z, Ling L, et al. Water conservation function of litter and soil layer under main forest types in Xinglong mountain of Gansu. Journal of Nanjing Forestry University ( Natural Science Edition ), 2013, 37 (2): 78- 84. | |
张梦杰, 孙树臣. 黄土高原六道沟小流域不同立地条件下深层土壤水分及粘粒分布特征. 聊城大学学报(自然科学版), 2021, 34 (4): 103- 110. | |
Zhang M J, Sun S C. Soil moisture distribution of deep soil layer under different habitats in Liudaogou catchment of the Loess Plateau and the influence factors. Journal of Liaocheng University (Natural Science), 2021, 34 (4): 103- 110. | |
赵文举, 李晓萍, 范严伟, 等. 西北旱区压砂地土壤水分的时空分布特征. 农业工程学报, 2015, 31 (17): 144- 151.
doi: 10.11975/j.issn.1002-6819.2015.17.019 |
|
Zhao W J, Li X P, Fan Y W, et al. Spatial-temporal stability distribution characteristics of soil moisture in gravel-sand mulched field in northwestern arid area. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (17): 144- 151.
doi: 10.11975/j.issn.1002-6819.2015.17.019 |
|
赵亚楠, 赵亚峰, 王红梅, 等. 2021. 荒漠草原灌丛转变土壤水分与地上生物量空间异质性及阈值响应. 林业科学, 57(12): 2−12. | |
Zhao Y N, Zhao Y F, Wang H M, et al. 2021. Response of spatial heterogeneity and threshold value for soil water and aboveground biomass of desert grassland-shrubland anthropogenic transition in desert steppe of Ningxia, China. Scientia Silvae Sinicae, 57(12): 2−12. [in Chinese] | |
赵洋毅, 段 旭, 舒树淼, 等. 2019. 云南磨盘山森林结构与生态水文功能. 北京: 中国科学出版社. | |
Zhao Y Y, Duan X, Shu S M, et al. 2019. Forest structure and eco-hydrological function in Mopan Mountain, Yunnan Province. Beijing: China Science Press. [in Chinese] | |
朱 海, 胡顺军, 刘 翔, 等. 不同龄阶梭梭根区土壤水分时空变化特征. 生态学报, 2017, 37 (3): 860- 867. | |
Zhu H, Hu S J, Liu X, et al. Spatio-temporal variations of soil moisture in the root zone of Haloxylon ammodendron at different life stages. Acta Ecologica Sinica, 2017, 37 (3): 860- 867. | |
朱梦雪, 赵洋毅, 王克勤, 等. 中亚热带不同演替森林群落土壤结构分形特征对大孔隙的影响. 林业科学研究, 2022, 35 (2): 67- 77. | |
Zhu M X, Zhao Y Y, Wang K Q, et al. Effect of fractal characteristics of soil structure on macropores in different succession forest communities in mid-subtropical region. Forest Research, 2022, 35 (2): 67- 77. | |
Brocca L, Morbidelli R, Melone F, et al. Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology, 2007, 333 (2): 356- 373. | |
Coban O, Deyn G B, Van Der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science, 2022, 375 (6584): abe0725.
doi: 10.1126/science.abe0725 |
|
Dari J, Morbidelli R, Saltalippi C, et al. Spatial-temporal variability of soil moisture: addressing the monitoring at the catchment scale. Journal of Hydrology, 2019, 570 (5): 436- 444. | |
Entin J K, Robock A, Vinnikov K Y, et al. Temporal and spatial scales of observed soil moisture variations in the extra-tropics. Journal of Geophysical Research Atmospheres, 2000, 105 (9): 11865- 11878.
doi: 10.1029/2000JD900051 |
|
Haddix M L, Gregorich E G, Helgason B L, et al. Climate carbon content and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma, 2020, 363, 114160.
doi: 10.1016/j.geoderma.2019.114160 |
|
Li H X, Chen H P, Wang H J, et al. 2018. Future precipitation changes over China under 15 °C and 20 °C global warming targets by using cordex regional climate models. Science of the Total Environment, 640−641: 543−554. | |
Li X, He B B, Quan X W, et al. Use of the standardized precipitation evapotranspiration index ( SPEI ) to characterize the drying trend in southwest China from 1982−2012. Remote Sensing, 2015, 7 (8): 10917- 11937.
doi: 10.3390/rs70810917 |
|
Liu Y L, Zhu G Y, Hai X Y, et al. Long-term forest succession improves plant diversity and soil quality but not significantly increase soil microbial diversity: evidence from the Loess Plateau. Ecological Engineering, 2020, 142, 105631.
doi: 10.1016/j.ecoleng.2019.105631 |
|
Martínez-Fernández J, González-Zamora A, Sánchez N, et al. Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived soil water deficit index. Remote Sensing of Environment, 2016, 177 (5): 277- 286. | |
Mccoll K A, Alemohammad S H, Akbar R, et al. The global distribution and dynamics of surface soil moisture. Nature Geoscience, 2017, 10 (2): 100- 104.
doi: 10.1038/ngeo2868 |
|
Piaszczyk W, Lasota J, Bońska E. Effect of organic matter released from deadwood at different decomposition stages on physical properties of forest soil. Forests, 2020, 11 (1): 24. | |
Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture climate interactions in a changing climate: a review. Earth Science Reviews, 2010, 99 (3): 125- 161. | |
Sun C L, Liu G B, Xue S. Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil particle-size distribution and soil nutrients. Ecological Research, 2016, 31 (6): 891- 902.
doi: 10.1007/s11284-016-1399-y |
|
Sun F, Lu Y, Fu B, et al. Spatial explicit soil moisture analysis: pattern and its stability at small catchment scale in the loess hilly region of China. Hydrological Processes, 2014, 28 (13): 4091- 4109.
doi: 10.1002/hyp.9940 |
|
Vereecken H, Kamai T, Harter T, et al. Explaining soil moisture variability as a function of mean soil moisture: a stochastic unsaturated flow perspective. Geophysical Research Letters, 2007, 34 (22): 315- 324. | |
Wei Y J, Wu X L, Xia J W, et al. Dynamic study of infiltration rate for soils with varying degrees of degradation by water erosion. International Soil and Water Conservation Research, 2019, 7 (2): 167- 175.
doi: 10.1016/j.iswcr.2018.12.005 |
|
Zhang Y W, Deng L, Yan W M, et al. Interaction of soil water storage dynamics and long term natural vegetation succession on the Loess Plateau, China. Catena, 2016, 137, 52- 60.
doi: 10.1016/j.catena.2015.08.016 |
[1] | 严铭海,王金池,黄清麟,庄崇洋,郑群瑞,卓鸣秀,官晓辉. 典型中亚热带天然阔叶林各林层林木高径比分布规律[J]. 林业科学, 2023, 59(4): 149-156. |
[2] | 杨静,张耀艺,谭思懿,廖姝,王定一,岳楷,倪祥银,吴福忠,杨玉盛. 中亚热带不同树种对土壤团聚体组成及其碳、氮含量的影响[J]. 林业科学, 2022, 58(4): 51-61. |
[3] | 马志波,黄清麟,庄崇洋,郑群瑞,王宏,陈铮. 中亚热带单优群落的林层划分——以格氏栲群落为例[J]. 林业科学, 2020, 56(3): 1-7. |
[4] | 曹小玉, 李际平, 委霞. 中亚热带典型林分空间结构对土壤养分含量的影响[J]. 林业科学, 2020, 56(1): 20-28. |
[5] | 黎铭, 张会兰, 孟铖铖, 杨文涛, 田琰琰. 皇甫川流域2000—2015年植被NDVI时空变化特征[J]. 林业科学, 2019, 55(8): 36-44. |
[6] | 陈金磊, 方晰, 辜翔, 李雷达, 刘兆丹, 王留芳, 张仕吉. 中亚热带2种森林群落组成、结构及区系特征[J]. 林业科学, 2019, 55(2): 159-172. |
[7] | 张晓,刘世荣,黄永涛,傅声雷. 辽东栎林演替过程中的土壤细菌群落结构和多样性变化[J]. 林业科学, 2019, 55(10): 193-202. |
[8] | 庄崇洋, 黄清麟, 马志波, 郑群瑞, 王宏. 典型中亚热带天然阔叶林各林层直径分布及其变化规律[J]. 林业科学, 2017, 53(4): 18-27. |
[9] | 庄崇洋, 黄清麟, 马志波, 郑群瑞, 王宏. 中亚热带天然阔叶林林层划分新方法——最大受光面法[J]. 林业科学, 2017, 53(3): 1-11. |
[10] | 马志波, 黄清麟, 庄崇洋, 郑群瑞, 王宏. 典型中亚热带天然阔叶林群落各乔木亚层的空间格局与关联性[J]. 林业科学, 2017, 53(12): 12-19. |
[11] | 欧朝蓉, 朱清科, 孙永玉. 元谋干热河谷旱季植被覆盖度的时空异质性[J]. 林业科学, 2017, 53(11): 20-28. |
[12] | 马志波, 黄清麟, 庄崇洋, 郑群瑞, 王宏. 基于林层的典型中亚热带天然阔叶林树种组成与多样性[J]. 林业科学, 2017, 53(10): 13-21. |
[13] | 石亚攀, 乔璐, 陈立新, 段文标, 张雪, 徐非, 刘晓锐. 红松针阔混交林林隙土壤颗粒有机碳和矿物结合有机碳的时空异质性[J]. 林业科学, 2014, 50(6): 18-27. |
[14] | 柴宗政, 王得祥, 郝亚中, 张丽楠, 朱红燕, 张丛珊. 秦岭中段华北落叶松人工林演替动态[J]. 林业科学, 2014, 50(2): 14-21. |
[15] | 刘效东, 乔玉娜, 周国逸, 肖崟, 张德强. 鼎湖山3种不同演替阶段森林凋落物的持水特性[J]. 林业科学, 2013, 49(9): 8-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||