林业科学 ›› 2024, Vol. 60 ›› Issue (8): 109-119.doi: 10.11707/j.1001-7488.LYKX20230080
王傲宇1(),郭有正1,邓坦2,刘洋1,邸楠3,段劼1,李熙萌4,*,席本野1
收稿日期:
2023-03-01
出版日期:
2024-08-25
发布日期:
2024-09-03
通讯作者:
李熙萌
E-mail:1319376254@qq.com
基金资助:
Aoyu Wang1(),Youzheng Guo1,Tan Deng2,Yang Liu1,Nan Di3,Jie Duan1,Ximeng Li4,*,Benye Xi1
Received:
2023-03-01
Online:
2024-08-25
Published:
2024-09-03
Contact:
Ximeng Li
E-mail:1319376254@qq.com
摘要:
目的: 探究不同植物水分调节策略评价结果的差异,明确最佳的植物水分调节策略评价方法,为精准评价植物水分调节策略提供方法学参考,也为深入了解速生树种在水分亏缺立地下生长的生理机制提供理论依据。方法: 以毛白杨为试验材料,在不同土壤水分条件下(充分滴灌、不灌溉)和不同季节间(旱季、雨季)比较4种不同定量评价植物水分调节策略的方法并分析其适用性。结果: 1)不同土壤水分不同季节条件下,水力学面积与日最大叶片水势差法对毛白杨水分调节策略的评价结果相同,均为不灌溉处理相较于灌溉处理更偏等水调节,旱季相较于雨季更偏等水调节策略,符合本研究所提出的“一致性”与“相同性”水分调节策略评价原则。 2) 利用叶片正午水势与水汽压亏缺间关系斜率法(KΨMD-VPD)来评价植物水分调节策略时,不同季节与不同灌溉处理间所得出的水分调节策略结果不一致。 3) 用黎明前-正午叶水势间关系斜率法(KΨPD-ΨMD)评价毛白杨水分调节策略时,不灌溉处理下不同季节间评价结果与其他方法一致,灌溉处理下季节间评价结果与其他方法相反。因此, KΨMD-VPD与KΨPD-ΨMD法均不满足上述提出的两点性原则。结论: 水力学面积法与叶片水势差法对毛白杨水分调节策略的评价结果较为准确,是理想的毛白杨水分调节策略的评价方法,KΨPD-ΨMD法KΨMD-VPD法不适用于评价毛白杨水分调节策略。
中图分类号:
王傲宇,郭有正,邓坦,刘洋,邸楠,段劼,李熙萌,席本野. 几种评价植物水分调节策略的方法对比——以毛白杨为例[J]. 林业科学, 2024, 60(8): 109-119.
Aoyu Wang,Youzheng Guo,Tan Deng,Yang Liu,Nan Di,Jie Duan,Ximeng Li,Benye Xi. Comparison of Several Methods for Evaluating Plant Water Regulation Strategies[J]. Scientia Silvae Sinicae, 2024, 60(8): 109-119.
表2
相同处理不同季节毛白杨等水/非等水调节对比结果①"
评价方法 Evaluation methods | 不灌溉 Non irrigation | 灌溉 Full irrigation | |||
旱季Dry season | 雨季Rainy season | 旱季Dry season | 雨季Rainy season | ||
ΔΨ | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric | |
KΨPD-ΨMD | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | |
KΨMD-ΨVPD | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric | |
HSA | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric |
表3
相同季节不同处理毛白杨等水/非等水调节对比结果"
评价方法 Evaluation methods | 旱季 Dry season | 雨季 Rainy season | |||
不灌溉Non irrigation | 灌溉Full irrigation | 不灌溉Non irrigation | 灌溉Full irrigation | ||
ΔΨ | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric | |
KΨPD-ΨMD | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric | |
KΨMD-ΨVPD | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | |
HSA | 偏等水 Isohydric | 偏非等水 An-isohydric | 偏等水 Isohydric | 偏非等水 An-isohydric |
范嘉智, 王 丹, 胡亚林, 等. 2016. 最优气孔行为理论和气孔导度模拟. 植物生态学报, 40(6): 631–642. | |
Fan J Z , Wang D, Hu Y L, et al., 2016. Optimal stomatal behavior theory for simulating stomatal conductance. Chinese Journal of Plant Ecology, 40(6): 631–642. [in Chinese] | |
李 荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 2015, 39 (8): 838- 848. | |
Li R, Jang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 2015, 39 (8): 838- 848. | |
刘金玉, 付培立, 王玉杰, 等. 2012. 热带喀斯特森林常绿和落叶榕树的水力特征和水分关系与抗旱策略. 植物科学学报, 30(5): 484−493. | |
Liu J Y, Fu P L, Wang Y J, et al. , 2012. Different drought-adaptation strategies as characterized by hydraulic and water relations traits of vergreen and deciduous figs in a tropical Karst Forest. Chinese Journal of Plant Ecology, 30(5): 484−493. [in Chinese] | |
隆彦昕. 2021. 艾比湖流域荒漠林5种优势木本植物的水分调节策略. 乌鲁木齐: 新疆大学. | |
Long Y X. 2021. Water regulation strategies of five dominant woody plants in desert forest of Ebinur Lake Basin. Urumqi: Xinjiang University. [in Chinese] | |
罗丹丹, 王传宽, 金 鹰. 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 2021, 45 (9): 925- 941.
doi: 10.17521/cjpe.2021.0111 |
|
Luo D D, Wang C K, Jin Y. Response mechanisms of hydraulic systems of woody plants to drought stress. Chinese Journal of Plant Ecology, 2021, 45 (9): 925- 941.
doi: 10.17521/cjpe.2021.0111 |
|
罗丹丹, 王传宽, 金 鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: Isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
罗丹丹. 2017. 东北温带森林8种树种水分调节对策研究. 哈尔滨: 东北林业大学. | |
Luo D D. 2017. Water regulation strategies for 8 tree species in the temperate forest of northeastern China. Harbin: Northeast Forestry University. [in Chinese] | |
马 煦. 2020. 不同土壤水分条件下毛白杨不同高度冠层的水分调节特征与机制. 北京: 北京林业大学. | |
Ma X. 2020. Characteristics and mechanism of water regulation of Populus tomentosa in different canopy layer under various soil water conditions. Beijing: Beijing Forestry University. [in Chinese] | |
国家林业和草原局. 2019. 中国森林资源报告. 2014—2018. 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. China Forest Resources Report. Beijing: Chinese Forestry Publishing House, 5. [in Chinese] | |
Álvarez-Maldini C, Acevedo M, Pinto M. 2021. Hydroscapes: a useful metric for distinguishing iso-/anisohydric behavior in almond cultivars. Plants, 10(6): 1249. | |
Anderegg W R L, Wolf A, Arango-Velez A, et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecology Letters, 2018, 21 (7): 968- 977.
doi: 10.1111/ele.12962 |
|
Berger-Landefeldt U. 1936. Das Wasserhaushalt der Alpenp- flanzen. Bibliotheca Botanica. | |
Binks O, Cernusak L A, Liddell M, et al. Forest system hydraulic conductance: partitioning tree and soil components. New Phytologist, 2022, 233 (4): 1667- 1681.
doi: 10.1111/nph.17895 |
|
Campbell G S, Norman J M. 1998. An introduction to environmental biophysics. 2nd edition. New York: Springer Verlag. | |
Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558 (7711): 531- 539.
doi: 10.1038/s41586-018-0240-x |
|
Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491 (7426): 752- 755.
doi: 10.1038/nature11688 |
|
Chen Y, Choat B, Sterck F, et al. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecology Letters, 2021a, 24, 2350- 2363.
doi: 10.1111/ele.13856 |
|
Chen Y, Maenpuen P, Zhang Y, et al. 2021b. Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits? New Phytologist, 229: 805–819. | |
Chen Z C, Li S, Wan X C, et al. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Frontiers in Plant Science, 2022, 13, 926535.
doi: 10.3389/fpls.2022.926535 |
|
Egea G, Nortes P A, González-Real M M, et al. Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes. Agricultural Water Management, 2010, 97 (1): 171- 181.
doi: 10.1016/j.agwat.2009.09.006 |
|
Fu X, Meinzer F C. Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): a global data set reveals coordination and trade offs among water transport traits. Tree Physiology, 2019, 39 (1): 122- 134.
doi: 10.1093/treephys/tpy087 |
|
Fu Z, Ciais P, Prentice I C, et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nature Communications, 2022, 13 (1): 989.
doi: 10.1038/s41467-022-28652-7 |
|
Goud E M, Sparks J P, Fishbein M, et al. Integrated metabolic strategy: A framework for predicting the evolution of carbon-water tradeoffs within plant clades. Journal of Ecology, 2019, 107 (4): 1633- 1644.
doi: 10.1111/1365-2745.13204 |
|
Gu L, Pallardy S G, Hosman K P, et al. Predictors and mechanisms of the drought-influenced mortality of tree species along the isohydric to anisohydic continuum in a decade-long study of a central US temperate forest. Biogeosciences Discussions, 2015, 12 (2): 1285- 1325. | |
Guo Y Z, Ma Y J, Ding C J, et al. Plant hydraulics provide guidance for irrigation management in mature polar plantation. Agricultural Water Management, 2023, 275, 108029.
doi: 10.1016/j.agwat.2022.108029 |
|
Hochberg U, Rockwell F E, Holbrook N M, et al. Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait. Trends in Plant Science, 2018, 23 (2): 112- 120.
doi: 10.1016/j.tplants.2017.11.002 |
|
Hartmann H. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 2018, 218 (1): 15- 28.
doi: 10.1111/nph.15048 |
|
Johnson D M, Berry Z C, Baker K V, et al. Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Functional Ecology, 2018, 32 (4): 894- 903.
doi: 10.1111/1365-2435.13049 |
|
Klein T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 2014, 28 (6): 1313- 1320.
doi: 10.1111/1365-2435.12289 |
|
Li D, Fernández J E, Li X, et al. Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations. Agricultural Water Management, 2020, 241, 106348.
doi: 10.1016/j.agwat.2020.106348 |
|
Liu L B, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally. Nature Communications, 2020, 11 (1): 4892.
doi: 10.1038/s41467-020-18631-1 |
|
Li X M, Blackman C J, Peters J M R, et al. More than iso/anisohydry: Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates. Functional Ecology, 2019, 33 (6): 1035- 1049.
doi: 10.1111/1365-2435.13320 |
|
Liu Y, Nadezhdina N, Di N, et al. An undiscovered facet of hydraulic redistribution driven by evaporation—a study from a Populus tomentosa plantation. Plant Physiology, 2021, 186 (1): 361- 372.
doi: 10.1093/plphys/kiab036 |
|
Liu J Q, Li D D, Fernándezc J E, et al. Variations of water balance components and carbon sequestration in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 2022, 320, 108958.
doi: 10.1016/j.agrformet.2022.108958 |
|
Lu M Z, Hedin L O. Global plant-symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nature Ecology & Evolution, 2019, 3 (2): 239- 250. | |
Markesteijn L, Poorter L. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traitspc. Plant Cell Environment, 2011, 34 (1): 137- 148.
doi: 10.1111/j.1365-3040.2010.02231.x |
|
Martínez-Vilalta J, Garcia-Forner N. 2017. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell & Environment, 40(6): 962−976. | |
Martinez-Vilalta J, Poyatos R, Aguade D, et al. A new look at water transport regulation in plants. New Phytologist, 2014, 204 (1): 105- 15.
doi: 10.1111/nph.12912 |
|
Meinzer F C, Woodruff D R, Marias D E, et al. 2014. Dynamics of leaf water relations components in co-occurring iso-and anisohydric conifer species. Plant, Cell & Environment, 37(11): 2577-2586. | |
Meinzer F C, Woodruff D R, Marias D E, et al. Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status. Ecology Letters, 2016, 19 (11): 1343- 1352.
doi: 10.1111/ele.12670 |
|
Ratzmann G, Meinzer F C, Tietjen B. Iso/anisohydry: still a useful concept. Trends in Plant Science, 2019, 24 (3): 191- 194.
doi: 10.1016/j.tplants.2019.01.001 |
|
Rodriguez‐Dominguez C M, Forner A, Martorell S, et al. Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant Cell Environment, 2022, 45 (7): 2037- 2061.
doi: 10.1111/pce.14330 |
|
Rogiers S Y, Greer D H, Hatfield J M, et al. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Tree Physiology, 2012, 32 (3): 249- 261.
doi: 10.1093/treephys/tpr131 |
|
Schultz H. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environment, 2003, 26 (8): 1393- 1405.
doi: 10.1046/j.1365-3040.2003.01064.x |
|
Tardieu F, Simonneau T. 1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 419-432. | |
Wright I J, Ackerly D D, Bongers F, et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 2007, 99 (5): 1003- 1015.
doi: 10.1093/aob/mcl066 |
|
Xi B Y, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agricultural Water Management, 2016, 176, 243- 254.
doi: 10.1016/j.agwat.2016.06.017 |
|
Yang T, Li D D, Clothier B, et al. Where to monitor the soil-water potential for scheduling drip irrigation in Populus tomentosa plantations located on the North China Plain. Forest Ecology and Management, 2019, 437, 99- 112. | |
Zou S Y, Li D D, Di N, et al. Stand development modifies effects of soil water availability on poplar fine-root traits: evidence from a six-year experiment. Plant Soil, 2022, 480 (1-2): 165- 184.
doi: 10.1007/s11104-022-05568-1 |
[1] | 徐磊,吴小云,律江,石云,朱梦洵,许行,张志强. 散射辐射比例对华北平原杨树人工林生态系统能量分配的影响[J]. 林业科学, 2024, 60(3): 100-110. |
[2] | 万家鸣,律江,石云,许行,张志强. 散射辐射对杨树人工林生态系统总初级生产力的影响[J]. 林业科学, 2023, 59(5): 1-10. |
[3] | 韩璐,赵涵,王薇,刘文辉,姜在民,蔡靖. 白杨杂交子代栓塞脆弱性分割及与生长的关系[J]. 林业科学, 2023, 59(3): 94-103. |
[4] | 王卫锋,赵瑜琦,高苗琴,宗毓铮,郝兴宇. 群众杨幼苗叶光合特性与碳氮分配对CO2浓度和气温升高的响应[J]. 林业科学, 2023, 59(2): 40-47. |
[5] | 赵蕊蕊,刘勇,王凯. 生物炭和有机肥对毛白杨人工林地木质分解及土壤养分循环相关酶活性的影响[J]. 林业科学, 2023, 59(11): 1-11. |
[6] | 李玲雅,邸楠,刘金强,赵小宁,邹松言,付海曼,席本野. 短轮伐毛白杨人工林耗水规律及作物系数曲线构建[J]. 林业科学, 2023, 59(10): 76-88. |
[7] | 王薇,赵涵,黄欣,侯卓梁,姜在民,蔡靖. 白杨无性系叶片水力及经济性状与生物量的关系[J]. 林业科学, 2023, 59(10): 89-98. |
[8] | 陈赢男,胡传景,诸葛强,胡建军,尹佟明. 杨树农杆菌遗传转化研究30年[J]. 林业科学, 2022, 58(12): 114-129. |
[9] | 张伟溪,王颜波,丁昌俊,朱文旭,苏晓华. 成龄转基因银中杨试验林外源基因水平转移及土壤微生物连年监测[J]. 林业科学, 2022, 58(1): 52-61. |
[10] | 唐芳,赵树堂,王丽娟,宋学勤,卢孟柱. 毛白杨次生维管系统再生过程的基因表达[J]. 林业科学, 2021, 57(9): 52-65. |
[11] | 李雪燕,熊典广,田呈明. 杨树腐烂病菌胞外分泌复合体亚基CcExo70的功能[J]. 林业科学, 2021, 57(8): 82-93. |
[12] | 陈越渠,刘庆珍,李立梅,张杨,韩姣,张永安. 杨树溃疡病拮抗链霉菌的筛选及鉴定[J]. 林业科学, 2021, 57(7): 92-100. |
[13] | 刘辉,吴小芹,叶建仁,陈丹. 荧光假单胞菌的溶磷机制及其在杨树菌根际的定殖动态[J]. 林业科学, 2021, 57(3): 90-97. |
[14] | 孙伟博,宫新栋,周燕,李红岩. 转玉米PEPC和PPDK基因杨树苗期的光合生理特性[J]. 林业科学, 2020, 56(7): 33-43. |
[15] | 何经纬,张伊莹,田呈明,熊典广,梁英梅. 区域景观格局对杨树锈病为害流行的影响——以北京延庆地区银白杨为例[J]. 林业科学, 2020, 56(4): 99-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||