林业科学 ›› 2020, Vol. 56 ›› Issue (3): 8-20.doi: 10.11707/j.1001-7488.20200302
孔喆1,陈胜楠1,律江2,陈立欣1,张志强1
收稿日期:
2019-05-08
出版日期:
2020-03-01
发布日期:
2020-04-08
基金资助:
Zhe Kong1,Shengnan Chen1,Jiang Lü2,Lixin Chen1,Zhiqiang Zhang1
Received:
2019-05-08
Online:
2020-03-01
Published:
2020-04-08
摘要:
目的: 分析欧美杨107杨昼夜液流特征,量化夜间液流对整日液流的贡献率,探讨昼夜液流对树形因子和环境因子的响应差异,为深入认识树木水分利用策略对环境的响应机制提供理论依据。方法: 以北京市顺义新城滨河森林公园内的树种欧美杨107杨为研究对象,在样地内选择8株35年生、长势良好的样木,于2018年7—10月采用热扩散探针对样木进行树干液流变化监测,并同步监测环境因子。结果: 1)欧美杨小、中、大径阶的液流速率呈"昼高夜低"单峰曲线,前半夜液流活动比后半夜活跃;2)各径阶整日液流量为39.04~94.96 g·cm-2d-1,夜间液流量为3.34~10.49 g·cm-2d-1,夜间液流对整日液流的贡献率在4.2%~16.2%范围内波动,整日液流量与日间液流量(去除夜间液流的日总液流)差异性达极显著水平(P < 0.01);3)日间和夜间液流对树形因子的响应关系一致,冠幅与昼夜液流呈显著正相关(P < 0.05),对昼夜液流的解释程度分别为80%和77%,树高和胸径对昼夜液流的影响不显著(P>0.05);4)饱和水汽压差(VPD)、太阳总辐射(Ra)、空气温度(T)和风速(Ws)是影响欧美杨整日液流量的主要环境因子;影响日间和夜间液流速率的环境因子存在差异,VPD、Ra、T和Ws是影响日间液流速率的主要环境因子,而夜间液流速率主要受VPD和Ws影响;Ws对昼夜液流速率的影响具有两重性,具体表现为白天促进树干液流速率,夜间抑制树干液流速率;日间液流量与夜间液流量极显著正相关(P < 0.01),小、中、大径阶的日间液流量对夜间液流量的解释程度分别为37%、48%和47%。结论: 欧美杨存在明显的夜间液流,估算欧美杨耗水量时,忽略夜间液流会低估日常需水量。液流速率对环境因子的响应存在昼夜差异,估算和模拟树木蒸腾量时,应分日间和夜间考虑环境因子对液流速率的影响。
中图分类号:
孔喆,陈胜楠,律江,陈立欣,张志强. 欧美杨单株液流昼夜组成及其影响因素分析[J]. 林业科学, 2020, 56(3): 8-20.
Zhe Kong,Shengnan Chen,Jiang Lü,Lixin Chen,Zhiqiang Zhang. Characteristics of Populus euramericana Sap Flow Over Day and Night and Its Influencing Factors[J]. Scientia Silvae Sinicae, 2020, 56(3): 8-20.
表1
样木生物学特征①"
径阶 Diameter class | 样树编号 Number | 胸径 DBH/cm | 树高 Tree height/m | 冠幅 Canopy diameter/m | 树冠投影面积 Crown projected area/m2 | 边材面积 Sapwood area/cm2 | |
东西 East-west | 南北 North-south | ||||||
小径阶Small (22~26 cm) | 1 | 22.3 | 22.3 | 5.3 | 5.2 | 21.65 | 170.06 |
2 | 23.1 | 17.3 | 5.7 | 5.1 | 22.90 | 181.33 | |
3 | 24.2 | 22.7 | 5.4 | 3.5 | 15.55 | 197.36 | |
4 | 24.5 | 20.9 | 4.5 | 4.2 | 14.86 | 201.84 | |
中径阶Medium (26~30 cm) | 5 | 27.2 | 20.8 | 6.5 | 4.3 | 22.90 | 244.16 |
6 | 28.3 | 20.1 | 6.3 | 6.2 | 30.68 | 262.44 | |
大径阶Large (30~34 cm) | 7 | 32.8 | 21.5 | 6.3 | 6.1 | 30.19 | 343.33 |
8 | 35.0 | 21.5 | 6.5 | 4.5 | 23.76 | 386.41 | |
平均值Average | — | 27.2 | 20.9 | 5.8 | 4.9 | 22.81 | 248.37 |
表3
昼夜液流速率与环境因子的偏相关系数"
径阶 Diameter class | Ra | VPD | T | Ws | SWC | ||||||||
昼 Diurnal | 昼 Diurnal | 夜 Nocturnal | 昼 Diurnal | 夜 Nocturnal | 昼 Diurnal | 夜 Nocturnal | 昼 Diurnal | 夜 Nocturnal | |||||
小径阶Small class | 0.334** | 0.470** | 0.825** | 0.605** | -0.007 | 0.195** | -0.100** | -0.255** | -0.048 | ||||
中径阶Medium class | 0.261** | 0.496** | 0.742** | 0.308** | -0.005 | 0.113** | -0.076** | -0.129** | -0.063* | ||||
大径阶Large class | 0.237** | 0.572** | 0.738** | 0.512** | 0.089** | 0.142** | -0.103** | -0.033 | -0.035 |
陈立欣. 树木/林分蒸腾环境响应及其生理控制. 北京: 北京林业大学博士学位论文.. 2013. | |
Chen L X . Environmental response and biophysical control over transpiration by trees/stands. Beijing: PhD thesis of Beijing Forestry University.. 2013. | |
樊敏, 马履一, 王瑞辉. 刺槐春夏季树干液流变化规律. 林业科学, 2008. 44 (1): 41- 45. | |
Fan M , Ma L Y , Wang R H . Variation of stem sap flow of Robinia pseudoacacia in spring and summer. Scientia Silvae Sinicae, 2008. 44 (1): 41- 45. | |
方伟伟, 吕楠, 傅伯杰. 植物夜间液流的发生、生理意义及影响因素研究进展综述. 生态学报, 2018. 38 (21): 1- 9. | |
Fang W W , Lü N , Fu B J . Research advances in nighttime sap flow density, its physiological implications, and influencing factors in plants. Acta Ecologica Sinica, 2018. 38 (21): 1- 8. | |
胡伟. 黄土丘陵区山杨树干液流动态分析. 西安: 中国科学院研究生院(教育部水土保持与生态环境研究中心)硕士学位论文.. 2010. | |
Hu W . Dynamic changes of Populus davidiana sap flow in hilly-gully region of Loess Plateau. Xian: MS thesis of Graduate University of Chinese Academy of Sciences (Research Centre of Soil and Water Conservation, Ministry of Education).. 2010. | |
刘崴, 魏天兴, 朱清科. 水蚀风蚀交错区河北杨树干液流密度特征及其对环境因子的响应. 北京林业大学学报, 2018. 40 (5): 73- 81. | |
Liu W , Wei T X , Zhu Q K . Dynamics of sap flow density of Populus hopeiensis and its responses to environmental variables in the water-wind erosion crisscross region on the Loess Plateau. Journal of Beijing Forestry University, 2018. 40 (5): 73- 81. | |
刘晓静, 赵平, 王权, 等. 树高对马占相思整树水分利用的效应. 应用生态学报, 2009. 20 (1): 15- 21. | |
Liu X J , Zhao P , Wang Q , et al. Effects of tree height on whole-tree water use of Acacia mangium. Chinese Journal of Applied Ecology, 2009. 20 (1): 15- 21. | |
马长明, 马玉洁, 程月明. 冀西北坝上干旱区北京杨树干液流特征及影响因素分析. 水土保持学报, 2017. 31 (6): 338- 344. | |
Ma C M , Ma Y J , Cheng Y M . Characteristics and the driving forces of sap flow in stems of Populus beijingensis in Bashang area of north-west Hebei. Journal of Soil and Water Conservation, 2017. 31 (6): 338- 344. | |
倪广艳, 赵平, 朱丽薇, 等. 荷木整树蒸腾对干湿季土壤水分的水力响应. 生态学报, 2015. 35 (3): 652- 662. | |
Ni G Y , Zhao P , Zhu L W , et al. Hydraulic responses of whole tree transpiration of Schima superba to soil moisture in dry and wet seasons.. Acta Ecologica Sinica, 2015. 35 (3): 652- 662. | |
孙慧珍, 周晓峰, 康绍忠. 应用热技术研究树干液流进展. 应用生态学报, 2004. 15 (6): 1074- 1078. | |
Sun H Z , Zhou X F , Kang S Z . Research advance in application of heat technique in studying stem sap flow. Chinese Journal of Applied Ecology, 2004. 15 (6): 1074- 1078. | |
王华, 赵平, 王权, 等. 马占相思夜间树干液流特征和水分补充现象的分析. 生态学杂志, 2007a. 26 (4): 476- 482. | |
Wang H , Zhao P , Wang Q , et al. Characteristics of nighttime sap flow and water recharge in Acacia mangium trunk.. Chinese Journal of Ecology, 2007a. 26 (4): 476- 482. | |
王华, 赵平, 蔡锡安, 等. 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响. 植物生态学报, 2007b. 31 (5): 777- 786. | |
Wang H , Zhao P , Cai X A , et al. Partitioning of night sap flow of Acacia mangium and its implication for estimating whole-tree transpiration.. Journal of Plant Ecology, 2007b. 31 (15): 777- 786. | |
王华田, 马履一, 孙鹏森. 油松、侧柏深秋边材木质部液流变化规律的研究. 林业科学, 2002. 38 (5): 31- 37. | |
Wang H T , Ma L Y , Sun P S . Sap flow fluctuation of Pinus tabulaeformis and Platycladus orientalis in late autumn. Scientia Silvae Sinicae, 2002. 38 (5): 31- 37. | |
王文杰, 孙伟, 邱岭, 等. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系. 林业科学, 2012. 48 (1): 77- 85. | |
Wang W J , Sun W , Qiu L , et al. Relations between stem sap flow density of Larix gmelinii and environmental factors under different temporal scale. Scientia Silvae Sinicae, 2012. 48 (1): 77- 85. | |
王艳兵, 德永军, 熊伟, 等. 华北落叶松夜间树干液流特征及生长季补水格局. 生态学报, 2013. 33 (5): 1375- 1385. | |
Wang Y B , De Y J , Xiong W , et al. The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation.. Acta Ecologica Sinica, 2013. 33 (5): 1375- 1385. | |
王艳兵, 王彦辉, 熊伟, 等. 六盘山半干旱区华北落叶松树干液流速率及主要影响因子的坡位差异. 林业科学, 2017. 53 (6): 10- 20. | |
Wang Y B , Wang Y H , Xiong W , et al. Variation in the sap flow velocity of Larix principis-rupprechtii and its impact factors in different slope positions in a semi-arid region of Liupan Mountains. Scientia Silvae Sinicae, 2017. 53 (6): 10- 20. | |
温忠麟, 侯杰泰, 马什赫伯特. 结构方程模型检验:拟合指数与卡方准则. 心理学报, 2004. 36 (2): 186- 194. | |
Wen Z L , Hau K T , Herbert W M . Structural equation model testing: cutoff criteria for goodness of fit indices and chi-square test. Acta Psychologica Sinica, 2004. 36 (2): 186- 194. | |
辛福梅, 闫小莉, 张长耀, 等. 西藏拉萨河谷区藏川杨和北京杨树干液流特征及其对环境因子的响应. 林业科学, 2019. 55 (2): 22- 32. | |
Xin F M , Yan X L , Zhang C Y , et al. Characteristics of stem sap flow of two poplar species and their responses to environmental factors in Lhasa River Valley of Tibet.. Scientia Silvae Sinicae, 2019. 55 (2): 22- 32. | |
徐枫. 杨树人工林生长季树干液流的动态研究. 北京: 北京林业大学硕士学位论文.. 2010. | |
Xu F . A study on stem sap flow dynamics of a poplar plantion in a growing season. Beijing: MS thesis of Beijing Forestry University.. 2010. | |
闫雪, 刘廷玺, 吕扬, 等. 科尔沁沙丘-草甸过渡带人工杨树林蒸腾耗水特征. 中国沙漠, 2016. 36 (6): 1571- 1579. | |
Yan X , Liu T X , Lü Y , et al. Transpiration of artificial Populus forest in the dunes-meadow ecotone of Horqin sandy land. Journal of Desert Research, 2016. 36 (6): 1571- 1579. | |
尹立河, 黄金廷, 王晓勇, 等. 陕西榆林地区旱柳和小叶杨夜间树干液流变化特征分析. 西北农林科技大学学报:自然科学版, 2013. 41 (8): 85- 90. | |
Yin L H , Huang J T , Wang X Y , et al. Characteristics of night time sap flow of Salix matsudana and Populus simonii in Yulin, Shaanxi. Journal of Northwest A & F University:Natural Science Edition, 2013. 41 (8): 85- 90. | |
鱼腾飞, 冯起, 司建华, 等. 胡杨的夜间蒸腾——来自树干液流、叶片气体交换及显微结构的证据. 北京林业大学学报, 2017. 39 (9): 8- 16. | |
Yu T F , Feng Q , Si J H , et al. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture. Journal of Beijing Forestry University, 2017. 39 (9): 8- 16. | |
赵春彦, 司建华, 冯起, 等. 树干液流研究进展与展望. 西北林学院学报, 2015a. 30 (5): 98- 105. | |
Zhao C Y , Si J H , Feng Q , et al. Stem sap flow research: progress and prospect.. Journal of Northwest Forestry University, 2015a. 30 (5): 98- 105. | |
赵春彦, 司建华, 冯起, 等. 胡杨夜间液流通量及其影响因子研究. 干旱区研究, 2015b. 32 (6): 1173- 1180. | |
Zhao C Y , Si J H , Feng Q , et al. Nighttime sap flux of Populus euphratica and the environment factors influecing it. Arid Zone Research, 2015b. 32 (6): 1173- 1180. | |
赵平, 饶兴权, 马玲, 等. 马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异. 生态学报, 2006. 26 (12): 4050- 4058. | |
Zhao P , Rao X Q , Ma L , et al. The variations of sap flux density and whole-tree transpiration across individuals of Acacia mangium.. Acta Ecologica Sinica, 2006. 26 (12): 4050- 4058. | |
周翠鸣, 赵平, 倪广艳, 等. 广州地区荷木夜间树干液流补水的影响因子及其对蒸腾的贡献. 应用生态学报, 2012. 23 (7): 1751- 1757. | |
Zhou C M , Zhao P , Ni G Y , et al. Water recharge through nighttime stem sap flow of Schima superba in Guangzhou region of Guangdong Province, South China: Affecting factors and contribution to transpiration.. Chinese Journal of Applied Ecology, 2012. 23 (7): 1751- 1757. | |
Barbeta A , Ogaya R , Peuelas J . Comparative study of diurnal and nocturnal sap flow of Quercus ilex and Phillyrea latifolia in a Mediterranean holm oak forest in Prades (Catalonia, NE Spain). Trees, 2012. 26 (5): 1651- 1659. | |
Benyon R G . Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree Physiology, 1999. 19 (13): 853- 859. | |
Brito C , Dinis L , Ferreira H , et al. The role of nighttime water balance on Olea europaea plants subjected to contrasting water regimes.. Journal of Plant Physiology, 2018. 226, 56- 63. | |
Bovard B D , Curtis P S , Vogel C S , et al. Environmental controls on sap flow in a northern hardwood forest. Tree Physiology, 2005. 25 (1): 31- 38. | |
Bucci S J , Scholz F G , Goldstein G , et al. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species.. Tree Physiology, 2004. 24 (10): 1119- 1127. | |
Caird M A , Richards J H , Donovan L A . Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiology, 2006. 143 (1): 4- 10. | |
Campbell G S, Norman J M. 1998. An introduction to environmental biophysics. second ed. Springer, New York. | |
Chen L X. Zhang Z Q. Ewers B E . Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PLoS One, 2012. 7 (10): e47882.. | |
Daley M J , Phillips N G . Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology, 2006. 26 (4): 411- 419. | |
Di N , Xi B Y , Clothier B , et al. Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain.. Forest Ecology and Management, 2019. 448, 445- 456. | |
Drake B G , Raschke K , Salisbury F B . Temperature and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind speed. Plant Physiology, 1970. 46 (2): 324- 330. | |
Fisher J B , Baldocchi D D , Misson L , et al. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 2007. 27 (4): 597- 610. | |
Forster M A . How significant is nocturnal sap flow? Tree Physiology, 34(7): 757-765. Tree Physiology, 2014. 34 (7): 757- 765. | |
Fricke W . Night-time transpiration-favouring growth?. Trends in Plant Science, 2019. 24 (4): 311- 317. | |
Granier A . Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 1987. 3 (4): 309- 320. | |
Granier A , Bobay V , Gash J H C , et al. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait.) in Les Landes forest.. Agricultural and Forest Meteorology, 1990. 51 (3): 309- 319. | |
Hou L , Zhou Y , Bao H , et al. imulation of maize (Zea mays L.) water use with the HYDRUS-1D model in the semi-arid Hailiutu River catchment, Northwest China. Hydrological Sciences Journal, 2017. 62 (1): 93- 103. | |
Kavanagh K L , Pangle R , Schotzko A D . Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho. Tree Physiology, 2007. 27 (4): 621- 629. | |
Kume T , Laplace S , Komatsu H , et al. Transpiration in response to wind speed: can apparent leaf-type differences between conifer and broadleaf trees be a practical indicator?. Trees, 2015. 29 (2): 605- 612. | |
Kupper P , Ivanova H , Sber A , et al. Night and daytime water relations in five fast-growing tree species: effects of environmental and endogenous variables.. Ecohydrology, 2018. 11 (6): 1- 8. | |
Lu P , Urban L , Zhao P . Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botanica Sinica, 2004. 46 (6): 631- 646. | |
Mccarthy H R , Pataki D E . Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosystems, 2010. 13 (4): 393- 414. | |
McDonald E P , Erickson J E , Kruger E L . Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?Functional Plant Biology, 29(9): 1115-1120. Functional Plant Biology, 2002. 29 (9): 1115- 1120. | |
Meidner H , Mansfield T A . Stomatal responses to illumination. Biological Reviews, 1965. 40 (4): 483- 508. | |
Meinzer F C , Goldstein G , Jackson P , et al. . Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties.. Oecologia, 1995. 101 (4): 514- 522. | |
Oishi A C , Hawthorne D A , Oren R . Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX, 2016. 139 | |
Oren R , Phillips N , Ewers B E , et al. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest.. Tree Physiology, 1999. 19 (6): 337- 347. | |
Peng S , Piao S L , Ciais P , et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013. 501 (7465): 88- 92. | |
Phillips N , Nagchaudhuri A , Oren R , et al. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow.. Trees, 1997. 11 (7): 412- 419. | |
Rawson H M , Clarke J M . Nocturnal transpiration in wheat. Functional Plant Biology, 1988. 15, 397- 406. | |
Schfer K V R , Oren R , Tenhunen J D . The effect of tree height on crown level stomatal conductance. Plant, Cell and Environment, 2000. 23 (4): 365- 375. | |
Schymanski S J , Or D . Wind increases leaf water use efficiency. Plant, Cell and Environment, 2016. 39 (7): 1448- 1459. | |
Tie Q , Hu H , Tian F , et al. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agricultural and Forest Meteorology, 2017. 240-241, 46- 57. | |
Solomon S , Qin D , Manning M , et al. Climate change 2007: the physical science basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.. England:Cambridge University Press., 2007. | |
Vertessy R A , Hatton T J , Reece P , et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physiology, 1997. 17 (12): 747- 756. | |
Víctor R D D , Rubén D S , Michael L G , et al. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus.. New Phytologist, 2013. 200 (3): 743- 752. | |
Walkley A , Black I A . An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 1934. 37 (1): 29- 38. | |
Zeppel M , Tissue D , Taylor D , et al. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Tree Physiology, 2010. 30 (8): 988- 1000. | |
Zeppel M J B , Lewis J D , Medlyn B , et al. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna.. Tree Physiology, 2011. 31 (9): 932- 944. | |
Zhao C Y , Si J H , Feng Q , et al. Comparative study of daytime and nighttime sap flow of Populus euphratica.. Plant Growth Regulation, 2017. 82 (2): 353- 362. | |
Zhao C Y , Si J H , Feng Q , et al. Nighttime transpiration of Populus euphratica during different phenophases. Journal of Forestry Research, 2019. 30 (2): 435- 444. |
[1] | 陈盼飞, 左力辉, 王桂英, 王进茂, 任亚超, 杨敏生. 盐胁迫下转复合多基因欧美杨107杨幼苗生长及生理响应[J]. 林业科学, 2017, 53(7): 45-53. |
[2] | 李义红, 黄印冉, 闫淑芳. 杨树新品种‘朝霞杨’[J]. 林业科学, 2016, 52(10): 167-167. |
[3] | 张益文, 任亚超, 刘娇娇, 梁海永, 杨敏生. 转双抗虫基因欧美杨107杨中外源基因的表达[J]. 林业科学, 2015, 51(12): 45-52. |
[4] | 牛庆霖, 王迎, 罗磊, 黄艳艳, 刘静, 冯殿齐, 曹帮华. 欧美杨107杨β-1,3-葡聚糖酶(BG2)基因遗传转化及对溃疡病的抗性分析[J]. 林业科学, 2013, 49(11): 60-66. |
[5] | 周亮;高慧;张利萍;刘盛全. 欧美杨107杨正常木与应拉木制浆造纸性能比较[J]. 林业科学, 2012, 48(5): 101-107. |
[6] | 刘亚梅;刘盛全. 人工授力欧美杨107杨不同倾斜角度苗木的微纤丝角、基本密度和轴向干缩率[J]. 林业科学, 2011, 47(8): 115-120. |
[7] | 张文婷;冀宪领;高绘菊;张淑君;任春久;赵凯;辛建增;牟志美. Trametes trogii WT-1降解欧美杨107杨木质素的初步研究[J]. 林业科学, 2011, 47(6): 128-132. |
[8] | 赵东;杨喜田;樊巍;高喜荣;王齐瑞. 杨树农田防护林带单木叶面积的变化[J]. 林业科学, 2011, 47(4): 107-113. |
[9] | 周亮;刘盛全;刘亚梅;刘倩. 欧美杨107杨生长应变与木材解剖特征和干缩性质之间的关系[J]. 林业科学, 2010, 46(9): 124-129. |
[10] | 刘亚梅;刘盛全. 欧美杨107杨苗人工倾斜树干应拉木形成特征及其解剖特性[J]. 林业科学, 2010, 46(5): 133-140. |
[11] | 周亮 刘盛全 刘亚梅 刘群燕. 欧美杨107杨偏心生长应变分布规律[J]. 林业科学, 2010, 46(4): 171-177. |
[12] | 周亮 刘盛全 刘倩 白默飞 刘亚梅 邵卓平. 欧美杨 107 杨立木生长应变分布规律[J]. 林业科学, 2009, 12(1): 118-124. |
[13] | 陈端吕. 李际平. 西洞庭湖区森林景观格局的环境响应[J]. 林业科学, 2008, 44(7): 29-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||