林业科学 ›› 2024, Vol. 60 ›› Issue (10): 143-153.doi: 10.11707/j.1001-7488.LYKX20220742
• 综合评述 • 上一篇
收稿日期:
2022-10-24
出版日期:
2024-10-25
发布日期:
2024-11-05
通讯作者:
杨光
E-mail:2549177876@qq.com
基金资助:
Baozhong Li(),Guang Yang*,Jibin Ning,Hongzhou Yu
Received:
2022-10-24
Online:
2024-10-25
Published:
2024-11-05
Contact:
Guang Yang
E-mail:2549177876@qq.com
摘要:
森林可燃物作为森林燃烧三要素之一,其载量、燃烧特性和连续性分布均会影响林火的发生、蔓延和防控。森林可燃物作为林火发生的物质基础和必要条件,是林火蔓延的主要载体。一旦发生高强度火灾会严重破坏森林生态环境和森林资源。开展森林可燃物调控,减少可燃物积累,改善可燃物的燃烧特性以及改变其水平和垂直连续性,对降低林火风险,减小林火强度有重要意义。本文从可燃物调控技术(人工调控、机械清除、计划烧除、化学除草、微生物降解、营造生物防火林带等)和评价方法(林火行为、森林燃烧性、火灾风险和生态效应等)2方面,综述了国内外研究现状,总结归纳了森林可燃物调控技术和调控效果评价方法,对比了不同调控措施的有效性,分析了各种评价方法的优缺点。并对可燃物调控技术的未来研究方向和评价方法进行了展望,提出需要开展森林可燃物的基础研究,针对性探讨适宜重点火险区的调控措施,并长期监测和动态评估调控效果,量化调控效果的时间变化及生态环境影响。在理解阻火原理的基础上,提出以“绿色防火”理念结合森林生态调控等综合技术,助力实现“双碳”目标,是未来森林防火研究与管理的重要方向。
中图分类号:
李保中,杨光,宁吉彬,于宏洲. 森林可燃物调控技术及其评价方法[J]. 林业科学, 2024, 60(10): 143-153.
Baozhong Li,Guang Yang,Jibin Ning,Hongzhou Yu. Forest Fuel Management Technologies and It’s Evaluation Methods[J]. Scientia Silvae Sinicae, 2024, 60(10): 143-153.
池玉杰. 东北林区64种木材腐朽菌木材分解能力的研究. 林业科学, 2001, 37 (5): 107- 112.
doi: 10.3321/j.issn:1001-7488.2001.05.019 |
|
Chi Y J. Study on the wood degrading ability of 64 wood-rotting Fungi in the Northeast Forestry Reserves of China. Scientia Silvae Sinicae, 2001, 37 (5): 107- 112.
doi: 10.3321/j.issn:1001-7488.2001.05.019 |
|
戴海平, 邢 杰, 管青军, 等. 计划烧除研究与应用. 森林防火, 2000, (1): 52- 53.
doi: 10.3969/j.issn.1002-2511.2000.01.028 |
|
Dai H P, Xing J, Guan Q J, et al. Research and application of planned burning. Forest Fire Prevention, 2000, (1): 52- 53.
doi: 10.3969/j.issn.1002-2511.2000.01.028 |
|
杜嘉林, 郭颖涛. 2013. 森林可燃物调控技术概述. 福州: 第三届中国林业学术大会论文集, 1−4 | |
Du J L, Guo Y T. 2013. Overview of forest fuel control technology. Fuzhou: Proceedings of the Third China Forestry Academic Conference, 1−4. [in Chinese] | |
段向阁, 刘 利. 计划烧除对可燃物管理的影响. 森林防火, 1997, (3): 25- 27. | |
Duan X G, Liu L. Impact of planned burning on fuel management. Forest Fire Prevention, 1997, (3): 25- 27. | |
高 敏, 任云卯, 周晓东, 等. 抚育间伐对西山林场侧柏林冠层可燃物特征及潜在火行为的影响. 北京林业大学学报, 2022, 44 (8): 56- 65. | |
Gao M, Ren Y M, Zhou X D, et al. Effects of thinning on canopy characteristics and potential crown fire behavior of Platycladus orientalis in Xishan Forest Farm of Beijing. Journal of Beijing Forestry University, 2022, 44 (8): 56- 65. | |
高仲亮, 周汝良, 王军国, 等. 计划烧除对森林碳汇的影响分析. 森林防火, 2010, (2): 35- 38. | |
Gao Z L, Zhou R L, Wang J G, et al. Analysis of the impact of planned burning on forest carbon sinks. Forest Fire Prevention, 2010, (2): 35- 38. | |
国家林业局. 2016. 生物防火林带经营管护技术规程. 北京: 全国森林消防标准化技术委员会, 1−18. | |
State Forestry Administration. 2016. Technical code for management and protection of biological fire prevention forest belt. Beijing: National Technical Committee for Standardization of Forest Fire Protection, 1−18. [in Chinese] | |
郭秋菊. 2013. 择伐和火干扰对长叶松幼苗更新的影响. 咸阳: 西北农林科技大学. | |
Guo Q J. 2013. Effects of selection and prescribed fire disturbances on longleaf pine seedling regeneration. Xianyang: Northwest Agricultural and Forestry University. [in Chinese] | |
韩焕金. 生物防火林带研究进展概述. 森林防火, 2018, (4): 49- 52. | |
Han H J. A summary of research progress in the technique of biological fire prevention belts. Forest Fire Prevention, 2018, (4): 49- 52. | |
贺红士, 常 禹, 胡远满, 等. 森林可燃物及其管理的研究进展与展望. 植物生态学报, 2010, 34 (6): 741- 752. | |
He H S, Chang Y, Hu Y M, et al. Contemporary studies and future perspectives of forest fuel and fuel management. Chinese Journal of Plant Ecology, 2010, 34 (6): 741- 752. | |
胡海清. 大兴安岭主要森林可燃物理化性质测定与分析. 森林防火, 1995, (1): 27- 31. | |
Hu H Q. Determination and analysis of physicochemical properties of main forest fuels in Daxing’anling. Forest Fire Prevention, 1995, (1): 27- 31. | |
胡海清. 2014. 森林可燃物调控技术研究与示范. 哈尔滨: 东北林业大学, 11−21. | |
Hu H Q. 2014. Research and demonstration of forest fuel treatment and reduction. Harbin: Northeast Forestry University. 11−21. [in Chinese] | |
胡同欣, 杨艺璇, 孙 龙, 等. 兴安落叶松林和白桦林下种植大球盖菇对枯落物层燃烧性的影响. 林业科学, 2022, 58 (7): 32- 42. | |
Hu T X, Yang Y X, Sun L, et al. Effects of planting Stropharia rugosoannulata under Larix gmelinii and Betula platyphylla forests on the flammability of litter layer. Scientia Silvae Sinicae, 2022, 58 (7): 32- 42. | |
贾丙瑞. 凋落物分解及其影响机制. 植物生态学报, 2019, 43 (8): 648- 657.
doi: 10.17521/cjpe.2019.0097 |
|
Jia B R. Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 2019, 43 (8): 648- 657.
doi: 10.17521/cjpe.2019.0097 |
|
金 琳, 刘晓东, 张永福. 森林可燃物调控技术方法研究进展. 林业科学, 2012, 48 (2): 155- 161. | |
Jin L, Liu X D, Zhang Y F. A review on the forest fuel treatment and reduction. Scientia Silvae Sinicae, 2012, 48 (2): 155- 161. | |
金 森, 杨艳波. 基于锥形量热仪的一维和三维燃烧性评价比较: 以南方7种树叶为例. 林业科学, 2016, 52 (8): 88- 95. | |
Jin S, Yang Y B. Comparison of one dimensional and three dimensional flammability evaluation: a case study of taking leaves of seven tree species in Southern China. Scientia Silvae Sinicae, 2016, 52 (8): 88- 95. | |
李炳怡, 舒立福, 丁永全, 等. 我国人工林森林可燃物特点及管理技术研究进展. 世界林业研究, 2021, 34 (1): 90- 95. | |
Li B Y, Shu L F, Ding Y Q, et al. Research progress in plantation fuel characteristics and management in China. World Forestry Research, 2021, 34 (1): 90- 95. | |
李伟克, 张 晨, 谷兴翰, 等. 北京西山侧柏林可燃物调控措施的影响评价. 浙江农林大学学报, 2020, 37 (3): 472- 479. | |
Li W K, Zhang C, Gu X H, et al. Impact assessment of fuel regulation measures in Platycladus orientalis forest in Western Hills of Beijing. Journal of Zhejiang A& F University, 2020, 37 (3): 472- 479. | |
刘广菊, 宋培臣, 肖功武. 东北、内蒙古林区物候点烧技术应用的情况分析. 森林工程, 2008, (3): 36- 38,43. | |
Liu G J, Song P C, Xiao G W. Applications of bioclimatic controlled burning technology in Northeast and Inner Mongolia Forest areas. Forest Engineering, 2008, (3): 36- 38,43. | |
刘志华, 常 禹, 贺红士, 等. 模拟不同森林可燃物处理对大兴安岭潜在林火状况的影响. 生态学杂志, 2009, 28 (8): 1462- 1469. | |
Liu Z H, Chang Y, He H S, et al. Effects of different forest fuel treatments on potential forest fire regimes in Great Xing’an Mountains: a simulation study. Chinese Journal of Ecology, 2009, 28 (8): 1462- 1469. | |
马爱丽, 李小川, 王振师, 等. 计划烧除的作用与应用研究综述. 广东林业科技, 2009, 25 (6): 95- 99. | |
Ma A L, Li X C, Wang Z S, et al. The overview of prescribed burning effect and application research. Guangdong Forestry Science and Technology, 2009, 25 (6): 95- 99. | |
马淑敏, 王海霞, 辛学兵, 等. 分解促进剂对九龙山林下凋落叶分解的影响. 福建农林大学学报(自然科学版), 2019, 48 (3): 330- 336. | |
Ma S M, Wang H X, Xin X B, et al. Effects of decomposition accelerator on litter decomposition in Jiulong Mountain of Beijing. Journal of Fujian Agriculture and Forestry University ( Natural Science Edition), 2019, 48 (3): 330- 336. | |
彭徐剑. 2012. 森林地被可燃物的生物降解技术研究. 哈尔滨: 东北林业大学. | |
Peng X J. 2012. Study on biodegradation of forest floor. Harbin: Northeast Forestry University. [in Chinese] | |
舒立福, 田晓瑞, 寇晓军. 计划烧除的应用与研究. 火灾科学, 1998, (3): 62- 68. | |
Shu L F, Tian X R, Kou X J. Application and research of prescribed burning and controlled burning. Fire Safety Science, 1998, (3): 62- 68. | |
舒立福, 田晓瑞, 徐忠忱. 森林可燃物可持续管理技术理论与研究. 火灾科学, 1999, (4): 20- 26. | |
Shu L F, Tian X R, Xu Z Z. The research and application of the sustainable management technique of forest fuel. Fire Safety Science, 1999, (4): 20- 26. | |
孙思琦. 2020. 纤维素高效降解菌对帽儿山三种人工林地表可燃物降解研究. 哈尔滨: 东北林业大学. | |
Sun S Q. 2020. A study on three forest fuel-beds degradation accelerated by efficient cellulose-degrading fungi in Maoer Mountain. Harbin: Northeast Forestry University. [in Chinese] | |
王海晖. 生物防火林带技术的科学基础和发展前景. 林业科学研究, 2015, 28 (5): 731- 738. | |
Wang H H. Scientific basis and prospects of biological fire-prevention-belt technique. Forest Rasearch, 2015, 28 (5): 731- 738. | |
王 丽, 张 军, 杨 涛, 等. 不同草皮挖取迹地湿草甸植物热值及灰分含量分析. 草地学报, 2017, 25 (2): 373- 378. | |
Wang L, Zhang J, Yang T, et al. Caloric value and ash content of wet meadow plants in different sod shoveling slashes. Acta Agrestia Sinica, 2017, 25 (2): 373- 378. | |
王立夫, 杜嘉林, 田力范. 计划烧除技术规范化管理的探讨. 森林防火, 2006, (4): 22- 24. | |
Wang L F, Du J L, Tian L F. Discussion on standardized management of planned burning technology. Forest Fire Prevention, 2006, (4): 22- 24. | |
王明玉, 舒立福, 姚树人. 北京地区森林可燃物人工调控技术. 森林防火, 2012, (3): 46- 48. | |
Wang M Y, Shu L F, Yao S R. Artificial control technology of forest fuel in Beijing area. Forest Fire Prevention, 2012, (3): 46- 48. | |
夏智武. 2016. 森林地表可燃物燃烧性评价研究. 北京: 中国林业科学研究院. | |
Xia Z W. 2016. Study on evaluation of forest surface fuel flammability. Beijing: Chinese Academy of Forestry. [in Chinese] | |
冼丽铧, 陈嘉杰, 陈红跃, 等. 28种防火林带树种树叶抗火性能研究. 河南农业大学学报, 2020, 54 (4): 575- 581. | |
Xian L H, Chen J J, Chen H Y, et al. Fire resistance of 28 tree species in fire-prevention belt. Journal of Henan Agricultural University, 2020, 54 (4): 575- 581. | |
杨 光, 袁思博, 舒立福, 等. 森林火灾中高能量火——飞火研究进展. 世界林业研究, 2020, 33 (1): 20- 25. | |
Yang G, Yuan S B, Shu L F, et al. Research progress of high-energy forest fire: spotting fire. World Forestry Research, 2020, 33 (1): 20- 25. | |
杨鸿培, 宋军平, 王巧燕. 西双版纳保护区计划烧除林下可燃物对大型食草哺乳动物群落结构及动态的影响. 林业调查规划, 2013, 38 (1): 9- 13. | |
Yang H P, Song J P, Wang Q Y. Impacts of fire prescribed use on the structure and dynamics of large herbivores in Xishuangbanna Nature Reserve. Forest Inventory and Planning, 2013, 38 (1): 9- 13. | |
杨 健, 孔健健, 刘 波. 林火干扰对北方针叶林林下植被的影响. 植物生态学报, 2013, 37 (5): 474- 480.
doi: 10.3724/SP.J.1258.2013.00474 |
|
Yang J, Kong J J, Liu B. A review of effects of fire disturbance on understory vegetation in boreal coniferous forest. Chinese Journal of Plant Ecology, 2013, 37 (5): 474- 480.
doi: 10.3724/SP.J.1258.2013.00474 |
|
杨文敏. 2021. 黄孢原毛平革菌和康氏木霉联合降解园林废弃物及其应用. 金华: 浙江师范大学. | |
Yang W M. 2021. Combination of Phanerochaete chrysosporium and Trichoderma koningii to degrade garden waste and its application. Jinhua: Zhejiang Normal University.[in Chinese] | |
张思玉. 杉木、马尾松人工林地表可燃物利用潜力分析. 浙江林业科技, 2012, 32 (1): 54- 57.
doi: 10.3969/j.issn.1001-3776.2012.01.013 |
|
Zhang S Y. The available bioenergy of surface fuel in pure Cunninghamia lanceolata and Pinus massoniana plantation, and their mixed plantation. Journal of Zhejiang Forestry Science and Technology, 2012, 32 (1): 54- 57.
doi: 10.3969/j.issn.1001-3776.2012.01.013 |
|
张文文, 王秋华, 龙腾腾, 等. 周期性计划烧除对森林生态系统的影响研究综述. 西南林业大学学报(自然科学), 2021, 41 (4): 181- 188. | |
Zhang W W, Wang Q H, Long T T, et al. A review of the effects of periodic prescribed burning on forest ecosystems. Journal of Southwest Forestry University (Natural Science), 2021, 41 (4): 181- 188. | |
张文文, 闫想想, 王秋华, 等. 计划烧除对云南松纯林可燃物的影响. 消防科学与技术, 2020, 39 (6): 750- 753.
doi: 10.3969/j.issn.1009-0029.2020.06.004 |
|
Zhang W W, Yan X X, Wang Q H, et al. Effects of prescribed burning on pinus yunnanensis pure forest fuel in Yunnan Province. Fire Science and Technology, 2020, 39 (6): 750- 753.
doi: 10.3969/j.issn.1009-0029.2020.06.004 |
|
张文文, 闫想想, 王秋华, 等. 计划烧除对云南松林地表可燃物火行为的影响. 北京林业大学学报, 2022, 44 (5): 69- 76. | |
Zhang W W, Yan X X, Wang Q H, et al. Effects of prescribed burning on fire behavior of surface fuel in Pinus yunnanensis forest land. Journal of Beijing Forestry University, 2022, 44 (5): 69- 76. | |
朱 敏, 刘晓东, 李璇皓,等. 北京西山油松林可燃物调控的影响评价. 生态学报, 2015, 35 (13): 4483- 4491. | |
Zhu M, Liu X D, Li X H, et al. Assessment of the impact of fuel management in Pinus tabulaeformis forests in the Beijing West Mountain Area. Acta Ecologica Sinica, 2015, 35 (13): 4483- 4491. | |
宗学政, 田晓瑞, 田 恒, 等. 计划火烧对区域森林燃烧性的影响. 林业科学研究, 2020, 33 (3): 54- 62. | |
Zong X Z, Tian X R, Tian H, et al. Influences of prescribed burning on regional forest burning probability. Forest Research, 2020, 33 (3): 54- 62. | |
宗学政, 田晓瑞. 可燃物处理对大兴安岭地区主要林型火行为的影响. 林业科学, 2021, 57 (2): 139- 149. | |
Zong X Z, Tian X R. Impacts of fuel treatment on potential fire behavior of main forest types in Daxing’anling. Scientia Silvae Sinicae, 2021, 57 (2): 139- 149. | |
Agee J K, Skinner C N. Basic principles of forest fuel reduction treatments. Forest Ecology and Management, 2005, 211 (1/2): 83- 96.
doi: 10.1016/j.foreco.2005.01.034 |
|
Andersson J, Westholm E. 2019. Closing the future: environmental research and the management of conflicting future value orders. Science, Technology and Human Values 44: 237−262. | |
Anderson H E. Forest fuel ignitibility. Fire Technology, 1970, 6 (4): 312- 319.
doi: 10.1007/BF02588932 |
|
Andlar M, Rezić T, Marđetko N, et al. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 2018, 18 (11): 768- 778.
doi: 10.1002/elsc.201800039 |
|
Babrauskas V. 2022. Analysis of flame retardancy in polymer science. Amsterdam: Elsevier. | |
Babu S, Rathore S S, Singh R, et al. 2022. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: a review. Bioresource Technology, 360: 127566. | |
Barid I A, Calting P C, Ive J R. Fire planing for wildfire management: a decision support system for Nadgee Nature Reserve, Australia. International Journal of Wildland Fire, 1994, 4 (2): 107- 122.
doi: 10.1071/WF9940107 |
|
Bassett T J, Landis D A, Brudvig L A. Effects of experimental prescribed fire and tree thinning on oak savanna understory plant communities and ecosystem structure. Forest Ecology and Management, 2020, 464, 118047.
doi: 10.1016/j.foreco.2020.118047 |
|
Beverly J L, Leverkus S E R, Cameron H, et al. Stand-level fuel reduction treatments and fire behaviour in canadian boreal conifer forests. Fire, 2020, 3 (3): 35.
doi: 10.3390/fire3030035 |
|
Boer M M, Sadler R J, Wittkuhn R S, et al. Long-term impacts of prescribed burning on regional extent and incidence of wildfires—evidence from 50 years of active fire management in SW Australian forests. Forest Ecology and Management, 2009, 259 (1): 132- 142.
doi: 10.1016/j.foreco.2009.10.005 |
|
Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2 (2): 122- 129.
doi: 10.1038/s41893-019-0220-7 |
|
Chiono L A, Fry D L, Collins B M, et al. Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat. Ecosphere, 2017, 8 (1): e01648.
doi: 10.1002/ecs2.1648 |
|
Clabo D , Dickens E. 2022. Evaluations of alternative herbicides to glyphosate for wilding pine control during forestry site preparation in the southeastern United States. Weed Technology, 36(4):561−569. | |
Cornelissen J H C, Grootemaat S, Verheijen L M, et al. 2017. Are litter decomposition and fire linked through plant species traits? New Phytologist, 216(3): 653−669. | |
Cruz M G, Sullivan A L, Gould J S, et al. Got to burn to learn: the effect of fuel load on grassland fire behaviour and its management implications. International Journal of Wildland Fire, 2018, 27 (11): 727- 741.
doi: 10.1071/WF18082 |
|
Cui X, Alam M A, Perry G L W, et al. Green firebreaks as a management tool for wildfires: lessons from China. Journal of Environmental Management, 2019, 233, 329- 336. | |
Curran T J, Perry G L W, Wyse S V, et al. Managing fire and biodiversity in the wildland-urban interface: a role for green firebreaks. Fire, 2017, 1 (1): 3.
doi: 10.3390/fire1010003 |
|
Delcourt C J F, Veraverbeke S. Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of Northeast Siberia. Biogeosciences Discussions, 2022, 19 (18): 4499- 4520. | |
Doran J D, Randall C K, Long A J. 2004. Fire in the wildland-urban interface: Selecting and maintaining firewise plants for landscaping. Florida: USDA Forest Service. | |
Evans A M, Everett R G, Stephens S L, et al. 2011. Comprehensive fuels treatment practices guide for mixed conifer forests: California, Central and Southern Rockies, and the Southwest. Santa Fe: Joint Fire Science Program Synthesis Reports. | |
Fang L, Yang J, Zu J, et al. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. Forest Ecology and Management, 2015, 356, 2- 12.
doi: 10.1016/j.foreco.2015.01.011 |
|
Ferreira O R, Jiménez M C. Comportamiento reproductivo tras fuego de especies forestales de Galicia. Cuadernos de la Sociedad Españ ola de Ciencias Forestales, 2000, (9): 109- 114. | |
Gazizov A M, Popova E V, Yangirova R R. Analysis of innovative ways to eliminate forest fires in order to minimize environmental damage//IOP conference series: earth and environmental science. IOP Publishing, 2022, 981 (3): 032027. | |
Gill A M, Stephens S L, Cary G J. The worldwide “wildfire” problem. Ecological applications, 2013, 23 (2): 438- 454.
doi: 10.1890/10-2213.1 |
|
Goodwin M J, North M P, Zald H S J, et al. The 15-year post-treatment response of a mixed-conifer understory plant community to thinning and burning treatments. Forest Ecology and Management, 2018, 429, 617- 624.
doi: 10.1016/j.foreco.2018.07.058 |
|
Goodwin M J, North M P, Zald H S J, et al. Changing climate reallocates the carbon debt of frequent-fire forests. Global Change Biology, 2020, 26 (11): 6180- 6189.
doi: 10.1111/gcb.15318 |
|
Greff B, Szigeti J, Nagy Á, et al. Influence of microbial inoculants on cocomposting of lignocellulosic crop residues with farm animal manure: a review. Journal of Environmental Management, 2022, 302, 114088.
doi: 10.1016/j.jenvman.2021.114088 |
|
Henaoui S E A. Flammability and combustibility of cistus plant groups in Tlemcen Region (Algeria). International Journal of Ecology and Environmental Sciences, 2018, 44 (4): 383- 393. | |
Herzog C, Hartmann M, Frey B. et al. Microbial succession on decomposing root litter in a drought-prone scots pine forest. The ISME Journal, 2019, 13, 2346- 2362.
doi: 10.1038/s41396-019-0436-6 |
|
Johnston J D, Olszewski J H, Miller B A, et al. Mechanical thinning without prescribed fire moderates wildfire behavior in an Eastern Oregon, USA ponderosa pine forest. Forest Ecology and Management, 2021, 501, 119674.
doi: 10.1016/j.foreco.2021.119674 |
|
Johnson M C. 2007. Guide to fuel treatments in dry forests of the western United States: assessing forest structure and fire hazard. Washington: USDA Forest Service General Technical Report, 686. | |
Jose S, Gillespie A R, Pallardy S G. Interspecific interactions in temperate agroforestry. Agroforestry Systems, 2004, 61, 237- 255. | |
Karban C C, Miller M E, Herrick J E, et al. Consequences of piñon-juniper woodland fuel reduction: prescribed fire increases soil erosion while mastication does not. Ecosystems, 2022, 25 (1): 122- 135.
doi: 10.1007/s10021-021-00644-6 |
|
Keenan R J, Weston C J, Volkova L. Potential for forest thinning to reduce risk and increase resilience to wildfire in Australian temperate Eucalyptus forests. Current Opinion in Environmental Science & Health, 2021, 23, 100280. | |
Kreye J K, Brewer N W, Morgan P, et al. Fire behavior in masticated fuels: a review. Forest Ecology and Management, 2014, 314, 193- 207.
doi: 10.1016/j.foreco.2013.11.035 |
|
Krishna M P, Mohan M. 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment, 2(4): 236–249. | |
Kumaat E J, Manembu I S, Mambu S M, et al. Small-scale biogas Rreactors converting organic waste to energy and Ferlilizer: a case study of Sam Ratulangi University Green Campus Project. Journal of Sustainability Perspectives, 2022, 2, 238- 244. | |
Leary J, Gross J. 2013. Characterizing weed management activities for archeological site preservation and grass-fire mitigation at Kaloko Honokohau National Historical Park. Hawaii: Technical Report, 1-35. | |
Legesse A, Negash M. Species diversity, composition, structure and management in agroforestry systems: the case of Kachabira district, Southern Ethiopia. Heliyon, 2021, 7 (3): e06477.
doi: 10.1016/j.heliyon.2021.e06477 |
|
Madrigal J, Marino E, Guijarro M, et al. Evaluation of the flammability of gorse (Ulex europaeus L. ) managed by prescribed burning. Annals of Forest Science, 2012, 69 (3): 387- 397.
doi: 10.1007/s13595-011-0165-0 |
|
Magagnotti N, Mihelic M, Perazzolo A, et al. Seventeen years of forest restoration with small-scale technologies: time and fuel consumption for alternative operations and techniques. Small-Scale Forestry, 2023, 22 (4): 557- 581. | |
Manzello S L. 2020. Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Cham: Springer International Publishing. | |
Marino E, Hernando C, Madrigal J, et al. Fuel management effectiveness in a mixed heathland: a comparison of the effect of different treatment types on fire initiation risk. International Journal of Wildland Fire, 2012, 21 (8): 969- 979.
doi: 10.1071/WF11111 |
|
Marshall G, Thompson D K, Anderson K, et al. The impact of fuel treatments on wildfire behavior in North American boreal fuels: a simulation study using FIRETEC. Fire, 2020, 3 (2): 18.
doi: 10.3390/fire3020018 |
|
Martin R E, Gordon D A, Gutierrez M A, et al. 1993. Assessing the flammability of domestic and wildland vegetation. Jekyll Island: 12th conference on fire and forest meteorology, 26-28. | |
McKinney S T, Abrahamson I, Jain T, et al. A systematic review of empirical evidence for landscape-level fuel treatment effectiveness. Fire Ecology, 2022, 18 (1): 21.
doi: 10.1186/s42408-022-00146-3 |
|
Miller S R, Corby M K. 2022. Global application of prescribed fire. Florida: CSIRO Publishing. | |
Murray B R, Martin L J, Brown C, et al. Selecting low-flammability plants as green firebreaks within sustainable urban garden design. Fire, 2018, 1 (1): 15.
doi: 10.3390/fire1010015 |
|
Östlund L, Laestander S, Aurell G, et al. The war on deciduous forest: large-scale herbicide treatment in the Swedish boreal forest 1948 to 1984. A Journal of the Human Environment, 2022, 51 (5): 1352- 1366.
doi: 10.1007/s13280-021-01660-5 |
|
Plieninger T, Muñoz-Rojas J, Buck L E, et al. Agroforestry for sustainable landscape management. Sustainability Science, 2020, 15, 1255- 1266.
doi: 10.1007/s11625-020-00836-4 |
|
Porre R J, Van Der W, De Deyn G B, et al. Is litter decomposition enhanced in species mixtures? a meta-analysis. Soil Biology and Biochemistry, 2020, 145, 107791.
doi: 10.1016/j.soilbio.2020.107791 |
|
Prichard S J, Peterson D L, Jacobson K. Fuel treatments reduce the severity of wildfire effects in dry mixed conifer forest, Washington, USA. Canadian Journal of Forest Research, 2010, 40 (8): 1615- 1626.
doi: 10.1139/X10-109 |
|
Rago M M, Urretavizcaya M F, Lederer N S, et al. Plant community response to forest fuel management in patagonian pine plantations. Frontiers in Forests and Global Change, 2020, (3): 1- 20.
doi: 10.3389/ffgc.2020.00055 |
|
Rabin S S, Gérard F N, Arneth A. The influence of thinning and prescribed burning on future forest fires in fire-prone regions of Europe. Environmental Research Letters, 2022, 17 (5): 055010.
doi: 10.1088/1748-9326/ac6312 |
|
Reimer R, Eriksen C. The wildfire within: gender, leadership and wildland fire culture. International Journal of Wildland Fire, 2018, 27 (11): 715- 726.
doi: 10.1071/WF17150 |
|
Ribeiro A F S, Brando P M, Santos L, et al. A compound event-oriented framework to tropical fire risk assessment in a changing climate. Environmental Research Letters, 2022, 17 (6): 065015.
doi: 10.1088/1748-9326/ac7342 |
|
Rigolot E, Fernandes P, Rego F. Managing wildfire risk, prevention, suppression. European Forest Institute Discussion Paper, 2009, (15): 49- 52. | |
Riley K, Thompson M. 2016. Natural hazard uncertainty assessment: modeling and decision support. Hoboken: American Geophysical Union. | |
Ryu S R, Choi H T, Lim J H, et al. Post-fire restoration plan for sustainable forest management in South Korea. Forests, 2017, 8 (6): 188.
doi: 10.3390/f8060188 |
|
Salis M, Laconi M, Ager A A, et al. Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. Forest Ecology and Management, 2016, 368, 207- 221.
doi: 10.1016/j.foreco.2016.03.009 |
|
Salis M, Del Giudice L, Arca B, et al. Modeling the effects of different fuel treatment mosaics on wildfire spread and behavior in a Mediterranean agro-pastoral area. Journal of Environmental Management, 2018, 212, 490- 505. | |
Schwilk D W, Keeley J E, Knapp E E, et al. The national fire and fire surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels. Ecological Applications, 2009, 19 (2): 285- 304.
doi: 10.1890/07-1747.1 |
|
Stephens S L, Collins B M, Roller G. Fuel treatment longevity in a Sierra Nevada mixed conifer forest. Forest Ecology and Management, 2012, 285, 204- 212.
doi: 10.1016/j.foreco.2012.08.030 |
|
Stephens S L, Moghaddas J J, Edminster C, et al. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western US forests. Ecological Applications, 2009, 19 (2): 305- 320.
doi: 10.1890/07-1755.1 |
|
Storey M A, Price O F, Bradstock R A, et al. Analysis of variation in distance, number, and distribution of spotting in Southeast Australian wildfires. Fire, 2020, 3 (2): 10.
doi: 10.3390/fire3020010 |
|
Tatum V L. Toxicity, transport, and fate of forest herbicides. Wildlife Society Bulletin, 2004, 32 (4): 1042- 1048.
doi: 10.2193/0091-7648(2004)032[1042:TTAFOF]2.0.CO;2 |
|
Thompson D K, Schroeder D, Wilkinson S L, et al. Recent crown thinning in a boreal black spruce forest does not reduce spread rate nor total fuel consumption: results from an experimental crown fire in Alberta, Canada. Fire, 2020, 3 (3): 28.
doi: 10.3390/fire3030028 |
|
Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 2019, 6 (2): 962- 979.
doi: 10.18331/BRJ2019.6.2.3 |
|
Varner J M, Kane J M, Kreye J K, et al. The flammability of forest and woodland litter: a synthesis. Current Forestry Reports, 2015, 1, 91- 99.
doi: 10.1007/s40725-015-0012-x |
|
Wang H H, Finney M A, Song Z L, et al. Ecological techniques for wildfire mitigation: two distinct fuelbreak approaches and their fusion. Forest Ecology and Management, 2021, 495, 119376.
doi: 10.1016/j.foreco.2021.119376 |
|
Zalesov S V, Magasumova A G. Protective forest management problems in Russia. E3S Web of Conferences, 2021, 258 (35): 08004. | |
Zhao B, Xing P, Wu Q L. Interactions between bacteria and fungi in macrophyte leaf litter decomposition. Environmental Microbiology, 2021, 23 (2): 1130- 1144.
doi: 10.1111/1462-2920.15261 |
|
Zomer R J, Neufeldt H, Xu J, et al. Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Scientific Reports, 2016, 6 (1): 29987.
doi: 10.1038/srep29987 |
[1] | 胡同欣,杨艺璇,孙龙,高传宇. 兴安落叶松林和白桦林下种植大球盖菇对枯落物层燃烧性的影响[J]. 林业科学, 2022, 58(7): 32-42. |
[2] | 王立轩,杨光,高佳琪,郑鑫,李兆国,瓮岳太,邸雪颖,于宏洲. 兴安落叶松林火烧迹地地表枯落物燃烧性变化[J]. 林业科学, 2022, 58(6): 110-121. |
[3] | 金森, 杨艳波. 基于锥形量热仪的一维和三维燃烧性评价比较:以南方7种树叶为例[J]. 林业科学, 2016, 52(8): 88-95. |
[4] | 苗庆林, 田晓瑞. 多气候情景下大兴安岭森林燃烧性评估[J]. 林业科学, 2016, 52(10): 109-116. |
[5] | 梁琴, 陶建平, 邓锋, 王微, 方文, 何平. 喀斯特山区9种常见树木叶片在防火期的阻火性分析[J]. 林业科学, 2015, 51(3): 102-108. |
[6] | 金琳;刘晓东;张永福. 森林可燃物调控技术方法研究进展[J]. 林业科学, 2012, 48(2): 155-161. |
[7] | 金森;宋彦彦;孙才英. 黑龙江帽儿山12种草本可燃物的慢速升温热解特性[J]. 林业科学, 2012, 48(10): 101-108. |
[8] | 梁瀛;张思玉;努尔古丽;张毓涛;程平. 天山中部林区主要树种理化性质及燃烧性分析[J]. 林业科学, 2011, 47(12): 101-105. |
[9] | 周国模 周宇峰 余树全 白尚斌 卢凤珠. 利用锥形量热仪研究不同含水率的树种枯落物燃烧性[J]. 林业科学, 2008, 44(5): 96-101. |
[10] | 金森. 林火图像测量中的火场边缘提取技术[J]. 林业科学, 2007, 43(9): 44-47. |
[11] | 吴玉章 原田寿郎. 磷酸铵盐处理人工林木材的燃烧性能[J]. 林业科学, 2005, 41(2): 112-116. |
[12] | 吴玉章 原田寿郎. 人工林木材燃烧性能的研究[J]. 林业科学, 2004, 40(2): 131-136. |
[13] | 田晓瑞 舒立福 张小罗 戴兴安. 树种枝叶微观结构对树种燃烧性的影响研究[J]. 林业科学, 2003, 39(4): 84-88. |
[14] | 张景群,王得祥. 40种乔木8种灌木燃烧性的R-Ⅲ方程计算与分类[J]. 林业科学, 1999, 35(4): 51-57. |
[15] | 李振问. 木荷生物防火工程的应用效果研究*[J]. 林业科学, 1997, 33(4): 338-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||