林业科学 ›› 2020, Vol. 56 ›› Issue (2): 69-78.doi: 10.11707/j.1001-7488.20200208
刘文鑫1,陈志成1,代永欣2,万贤崇1,*
收稿日期:
2019-02-22
出版日期:
2020-02-25
发布日期:
2020-03-17
通讯作者:
万贤崇
基金资助:
Wenxin Liu1,Zhicheng Chen1,Yongxin Dai2,Xianchong Wan1,*
Received:
2019-02-22
Online:
2020-02-25
Published:
2020-03-17
Contact:
Xianchong Wan
摘要:
目的: 通过比较转水通道蛋白基因PtPIP1;3(GenBank登录号:MN795092 ptopip1.3)的84K杨与野生型植株的光合作用对干旱及复水的响应,分析该过程的限制因素,以期深入了解水通道蛋白PIP1在干旱胁迫及复水过程中对CO2导度的调节作用及其对光合作用的影响。方法: 以杂交杨84K野生型及转PtPIP1;3基因植株为研究对象,进行重度干旱胁迫(土壤含水量达到田间持水量的35%)及复水处理,测定气体交换及叶绿素荧光各个指标,计算叶肉导度(gm)等参数,进而分析水通道蛋白在干旱条件及复水后对CO2导度和光合作用的调节作用。结果: 转PtPIP1;3基因84K杨在正常浇水下净光合速率(Pn)、气孔导度(gs)和蒸腾速率(Tr)显著高于84K野生型。干旱胁迫至第6天,野生型和转基因植株光合作用都开始下降,且转基因植株光合作用下降速度更快,至第7天降到野生型同样的水平。干旱处理的第7~10天,转基因植株和野生型植株的gs、gm和Pn均显著低于各自对照(正常浇水植株),光化学淬灭(qP)、光系统Ⅱ实际光化学效率(ФPSⅡ)、电子传递速率(Jflu)、最大羧化速率(Vcmax)和最大电子传递速率(Jmax)也显著降低,此时2种植株的光合作用都主要受到叶肉导度的限制。在复水的3天过程中,转基因植株的光合作用恢复速度更快,而且叶绿素荧光参数能够恢复到正常水平,期间光合作用主要受到叶肉导度的限制;而野生型植株的光合参数以及叶绿素荧光参数都未完全恢复,其光合作用除了受到叶肉导度的限制外,还受到光合作用中生物化学过程的限制。结论: 叶肉导度是转水通道蛋白基因及野生型84K杨干旱胁迫和复水过程中光合作用的主要限制因素。在干旱胁迫后水通道蛋白基因过表达的转基因杨树光合作用恢复迅速,包括光系统Ⅱ性能的恢复,这有助于杨树适应自然界中经常发生的阶段性干旱胁迫。
中图分类号:
刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应[J]. 林业科学, 2020, 56(2): 69-78.
Wenxin Liu,Zhicheng Chen,Yongxin Dai,Xianchong Wan. Responses of Photosynthetic Physiological Process of a Poplar with Overexpressed PIP1 Gene to Drought Stress and Rehydration[J]. Scientia Silvae Sinicae, 2020, 56(2): 69-78.
表1
胁迫和复水期间PB13和WT的叶肉导度(gm)、Rubsico最大羧化速率(Vcmax)、最大电子传递速率(Jmax)和叶绿体CO2浓度(Cc)的变化①"
处理 Treatment | gm/ (mol CO2·m-2s-1) | Vcmax/ (μmol CO2· m-2s-1) | Jmax/ (μmol· m-2s-1) | Cc/ (μmol CO2·mol-1) |
野生型WT-S | 0.007±0.003 b | 13±1.8 b | 45±4.2 b | 51±4.9 b |
野生型WT-CK | 0.100±0.012 a | 37±8.8 a | 98±1.3 a | 122±12.5 a |
野生型WT-RE1 | 0.047±0.006 b | 18±4.4 b | 54±4.9 b | 98±10.2 a |
野生型WT-CK | 0.116±0.014 a | 39±4.8 a | 97±3.5 a | 116±13.2 a |
野生型WT-RE2 | 0.052±0.004 b | 24±12.4 b | 55±4.6 b | 123±20.1 a |
野生型WT-CK | 0.106±0.005 a | 37±5.8 a | 98±3.8 a | 118±8.7 a |
野生型WT-RE3 | 0.069±0.004 b | 29±0.5 b | 58±0.1 b | 150±6.7 a |
野生型WT-CK | 0.096±0.010 a | 41±2.1 a | 88±1.2 a | 120±9.9 b |
过表达PB13-S | 0.002±0 b | 10±0.2 b | 35±6.3 b | 44±0.4 b |
过表达PB13-CK | 0.141±0.021 a | 53±11.5 a | 126±0.2 a | 157±9.4 a |
过表达PB13-RE1 | 0.174±0.001 a | 35±6.9 b | 108±4.0 b | 187±2.9 a |
过表达PB13-CK | 0.136±0.017 b | 54±4.1 a | 120±3.2 a | 151±15.7 b |
过表达PB13-RE2 | 0.139±0.011 a | 37±1.0 b | 105±5.3 b | 176±15.7 a |
过表达PB13-CK | 0.140±0.014 a | 55±3.4 a | 121±2.8 a | 155±15.5 b |
过表达PB13-RE3 | 0.098±0.003 b | 39±0.6 b | 113±4.2 b | 138±11.8 b |
过表达PB13-CK | 0.130±0.017 a | 59±4.1 a | 123±4.6 a | 155±15.4 a |
表2
干旱胁迫及复水后PB13和WT植株的光合作用限制因素分析①"
处理 Treatments | 基因型 Gene type | 气孔限制 Stomatal limitation (ls)(%) | 叶肉导度限制 Mesophyll conductance limitation (lm)(%) | 生物化学限制 Biochemical limitation (lb)(%) |
对照Control | 野生型WT | 19.6±2.0 | 45.0±2.7 | 35.4±0.7 |
过表达PB13 | 39.0±2.9 | 45.9±4.2 | 15.0±1.3 | |
胁迫Stress | 野生型WT | 18.4±3.4 | 76.2±3.2 | 5.5±0.2 |
过表达PB13 | 6.5±0.5 | 88.9±0.2 | 4.6±0.7 | |
复水1 RE-1 | 野生型WT | 17.9±4.7 | 30.6±2.4 | 51.5±2.4 |
过表达PB13 | 22.6±1.5 | 18.8±3.2 | 58.6±3.1 | |
复水2 RE-2 | 野生型WT | 18.2±2.8 | 49.2±3.3 | 32.6±0.5 |
过表达PB13 | 24.1±3.3 | 27.3±0.9 | 48.6±4.2 | |
复水3 RE-3 | 野生型WT | 24.0±1.7 | 38.9±0.1 | 37.1±1.8 |
过表达PB13 | 24.3±2.1 | 45.1±1.2 | 30.7±1.1 |
冷华妮. 2012.植物栓塞修复机制与质膜内在水通道蛋白基因的克隆、表达和转基因研究.北京:中国林业科学研究院博士学位论文. | |
Leng H N. 2012. Cloning and expression of PIPs gene in Populus and aquaporins role in embolism recovery. Beijing: PhD thesis of Chinese Academy of Froestry.[in Chinese] | |
刘文鑫. 2015.杨树溃疡病发生的水分生理效应及转录组分析.保定:河北农业大学硕士学位论文. | |
Liu W X. 2015. The physiological effects and transcriptome profiling of Populus beijingensis infected by poplar canker disease. Baoding: MS thesis of Agricultural University of Hebei.[in Chinese] | |
刘文鑫, 万贤崇. 杨品种'84K'光合生理的不同过程对干旱和复水的响应. 植物科学学报, 2019. 37 (4): 530- 539. | |
Liu W X , Wan X C . Responses of different photosynthetic physiological processes in Populus alba×P. glandulosa to drought and rehydration. Plant Science Journal, 2019. 37 (4): 530- 539. | |
王凯, 沈潮, 曹鹏, 等. 沙地樟子松幼苗干旱致死过程中非结构性碳水化合物的变化. 应用生态学报, 2018. 29 (11): 3513- 3520. | |
Wang K , Shen C , Cao P , et al. Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica seedlings in the process of drought-induced mortality. Chinese Journal of Applied Ecology, 2018. 29 (11): 3513- 3520. | |
云菲, 刘国顺, 史宏志. 光氮互作对烤烟光合作用及叶绿素荧光特性的影响. 中国农业科学, 2010. 43 (5): 932- 944.
doi: 10.3864/j.issn.0578-1752.2010.05.006 |
|
Yun F , Liu G S , Shi H Z . Effects of light nitrogen interaction on photosynthesis and chlorophyll fluorescence characteristics in flue-cured tobacco. Scientia Agricultura Sinica, 2010. 43 (5): 932- 944.
doi: 10.3864/j.issn.0578-1752.2010.05.006 |
|
Bernacchi C J , Portis A R , Nakano H , et al. Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology, 2002. 130 (4): 1992- 1998. | |
Buckley T N , Diaz-Espejo A . Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell & Environment, 2015. 38 (6): 1200- 1211. | |
Campos H , Trejo C , Peña-Valdivia C B , et al. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L) plants under water stress and re-watering:Delayed restoration of photosynthesis during recovery. Environmental and Experimental Botany, 2014. 98 (1): 56- 64. | |
Centritto M , Loreto F , Chartzoulakis K . The use of low CO2 to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant, Cell & Environment, 2003. 26 (4): 585- 594. | |
Chaves M M , Flexas J , Pinheiro C . Photosynthesis under drought and salt stress:Regulation mechanisms from whole plant to cell. Annals of Botany, 2009. 103 (4): 551- 560.
doi: 10.1093/aob/mcn125 |
|
Chen Y , Yu J , Huang B . Effects of elevated CO2 concentration on water relations and photosynthetic responses to drought stress and recovery during rewatering in Tall Fescue. Journal of the American Society for Horticultural Science, 2015. 140, 19- 26.
doi: 10.21273/JASHS.140.1.19 |
|
Chrispeels M J , Morillon R , Maurel C , et al. Aquaporins of plants:Structure, function, regulation, and role in plant water relations. Current Topics in Membranes, 2001. 51, 277- 334.
doi: 10.1016/S1063-5823(01)51009-1 |
|
Cui X H , Hao F S , Chen H , et al. Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. Journal of Plant Research, 2008. 121 (2): 207- 214.
doi: 10.1007/s10265-007-0130-z |
|
Demmig-Adams B , Adams W W . Photosynthesis-harvesting sunlight safely. Nature, 2000. 403 (6768): 371- 373.
doi: 10.1038/35000315 |
|
Ethier G J , Livingston N J . On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell & Environment, 2004. 27 (2): 137- 153. | |
Evans J R , Kaldenhoff R , Genty B , et al. Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany, 2009. 60 (8): 2235- 2248.
doi: 10.1093/jxb/erp117 |
|
Farquhar G D , von Caemmerer S , Berry J A . A biochemical model of photosynthetic CO2assimilation in leaves of C3 species. Planta, 1980. 149 (1): 78- 90.
doi: 10.1007/BF00386231 |
|
Fetter K , Wilder V V , Moshelion M , et al. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell, 2004. 16 (1): 215- 228.
doi: 10.1105/tpc.017194 |
|
Flexas J , Carriquí M , Coopman R E , et al. Stomatal and mesophyll conductances to CO2 in different plant groups:Underrated factors for predicting leaf photosynthesis responses to climate change?. Plant Science, 2014. 226, 41- 48.
doi: 10.1016/j.plantsci.2014.06.011 |
|
Flexas J , Barbour M M , Brendel O , et al. Mesophyll diffusion conductance to CO2:An unappreciated central player in photosynthesis. Plant Science, 2012. 193/194 (1): 70- 84. | |
Flexas J , Matilde B , Bota J , et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110(Vberlandieri×V. rupestris). Journal of Experimental Botany, 2009. 60 (8): 2361- 2377.
doi: 10.1093/jxb/erp069 |
|
Flexas J , Ribas-Carbo M , Diaz-Espejo A , et al. Mesophyll conductance to CO2:Current knowledge and future prospects. Plant, Cell & Environment, 2008. 31 (5): 602- 621. | |
Flexas J , Díazespejo A , Berry J , et al. Analysis of leakage in IRGA's leaf chambers of open gas exchange systems:Quantification and its effects in photosynthesis parameterization. Journal of Experimental Botany, 2007. 58 (6): 1533- 1543.
doi: 10.1093/jxb/erm027 |
|
Flexas J , Miquel R C , Hanson D T , et al. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. The Plant Journal, 2006. 48 (3): 427- 439.
doi: 10.1111/j.1365-313X.2006.02879.x |
|
Flexas J , Bota J , Loreto F , et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 2004. 6 (3): 269- 279.
doi: 10.1055/s-2004-820867 |
|
Flexas J , Bota J , Escalona J M , et al. Effects of drought on photosynthesis in grapevines under field conditions:An evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 2002. 29 (4): 461- 471.
doi: 10.1071/PP01119 |
|
Galle A , Flexas J . The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris):Acclimation or limitation?. Journal of Experimental Botany, 2009. 60 (8): 2379- 2390.
doi: 10.1093/jxb/erp071 |
|
Galle A , Florez-Sarasa I , Aououad H E , et al. The Mediterranean evergreen Quercus ilex and the semi-deciduous Cistus albidus differ in their leaf gas exchange regulation and acclimation to repeated drought and re-watering cycles. Journal of Experimental Botany, 2011. 62 (14): 5207- 5216.
doi: 10.1093/jxb/err233 |
|
Galmés J , Medrano H , Flexas J . Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 2007. 175 (1): 81- 93.
doi: 10.1111/j.1469-8137.2007.02087.x |
|
Galmés J , Molins A , Flexas J , et al. Coordination between leaf CO2, diffusion and Rubisco properties allows maximizing photosynthetic efficiency in Limonium species. Plant, Cell & Environment, 2017. 40 (10): 2081- 2094. | |
Galmés J , Ochogavía J M , Gago J , et al. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: Anatomical adaptations in relation to gas exchange parameters. Plant Cell & Environment, 2013. 36 (5): 920- 935. | |
Grassi G , Magnani F . Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment, 2005. 28 (7): 834- 849. | |
Harley P C , Loreto F , Di Marco G . Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology, 1992. 98 (4): 1429- 1436.
doi: 10.1104/pp.98.4.1429 |
|
Hartmann H , Moura C F , Anderegg W R L , et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 2018. 218, 15- 28.
doi: 10.1111/nph.15048 |
|
Heckwolf M , Pater D , Hanson D T , et al. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO\-2 transport facilitator. Plant Journal, 2011. 67 (5): 795- 804.
doi: 10.1111/j.1365-313X.2011.04634.x |
|
Ho Q T , Berghuijs H N C , Watté R , et al. Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. Plant Cell & Environment, 2016. 39 (1): 50- 61. | |
Kalaji H M , Jajoo A , Oukarroum A , et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 2016. 38 (4): 102.
doi: 10.1007/s11738-016-2113-y |
|
Kozaki A , Takeba G . Photorespiration protects C3 plants from photooxidation. Nature, 1996. 384 (6609): 557- 560.
doi: 10.1038/384557a0 |
|
Lawlor D W , Tezara W . Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells:A critical evaluation of mechanisms and integration of processes. Annals of Botany, 2009. 103 (4): 561- 579.
doi: 10.1093/aob/mcn244 |
|
Moshelion M , Halperin O , Wallach R , et al. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants:Crop water-use efficiency, growth and yield. Plant, Cell & Environment, 2015. 38 (9): 1785- 1793. | |
Perez-Martin A , Michelazzo C , Torres-Ruiz J M , et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees:Correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany, 2014. 65 (12): 3143- 3156.
doi: 10.1093/jxb/eru160 |
|
Sade N , Alexander G , Flexas J , et al. Differential tissue-specific expression of NtAQP1 in Arabidopsis thaliana, reveals a role for this protein in stomatal and mesophyll conductance of CO2, under standard and salt-stress conditions. Planta, 2014. 239 (2): 357- 366.
doi: 10.1007/s00425-013-1988-8 |
|
Sharkey T D , Bernacchi C J , Farquhar G D , et al. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell & Environment, 2007. 30 (9): 1035- 1040. | |
Sreedharan S , Shekhawat U K S , Ganapathi T R . Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnology Journal, 2013. 11 (8): 942- 952.
doi: 10.1111/pbi.12086 |
|
Swenson J J, Schwantes A M, Johnson D M, et al. 2017. Soil moisture extremes drive tree canopy death in 2011 Texas drought: multispectral (Landsat, NAIP) and L-band passive microwave remote sensing (SMOS-IC). Agu Fall Meeting. AGU Fall Meeting Abstracts. | |
Tosens T , Nishida K , Gago J , et al. Photosynthetic capacity in 35 ferns and fern allies:Mesophyll CO2 diffusion as a key trait. New Phytologist, 2016. 209 (4): 1576- 1590.
doi: 10.1111/nph.13719 |
|
Trenberth K E , Dai A , Schrier G V D , et al. Global warming and changes in drought. Nature Climate Change, 2013. 4, 17- 22. | |
Uehlein N , Lovisolo C , Siefritz F , et al. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 2003. 425 (6959): 734- 737.
doi: 10.1038/nature02027 |
|
Uehlein N , Otto B , Hanson D T , et al. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. The Plant Cell, 2008. 20 (3): 648- 657.
doi: 10.1105/tpc.107.054023 |
|
Veromann-Jürgenson L L , Tosens T , Laanisto L , et al. Extremely thick cell walls and low mesophyll conductance:Welcome to the world of ancient living!. Journal of Experimental Botany, 2017. 68 (7): 1639- 1653.
doi: 10.1093/jxb/erx045 |
|
Wang L , Li Q T , Lei Q , et al. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biology, 2017. 17 (1): 246. | |
Zhou S , Duursma R A , Medlyn B , et al. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agricultural & Forest Meteorology, 2013. 182/183 (22): 204- 214. | |
Zhou S , Medlyn B , Sabate S , et al. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiology, 2014. 34 (10): 1035- 1046.
doi: 10.1093/treephys/tpu072 |
[1] | 张超, 王进茂, 赵洁, 庞丁玮, 张德健, 杨敏生. 转多基因欧美杨Bt基因表达特征[J]. 林业科学, 2019, 55(9): 61-70. |
[2] | 辛福梅, 闫小莉, 张长耀, 贾黎明. 西藏拉萨河谷区藏川杨和北京杨树干液流特征及其对环境因子的响应[J]. 林业科学, 2019, 55(2): 22-32. |
[3] | 张扬, 杜琳, 唐贤丰, 刘唤唤, 周功克, 柴国华. 杨树BAG基因的鉴定及表达模式分析[J]. 林业科学, 2019, 55(1): 138-145. |
[4] | 李建庆, 梅增霞, 杨忠岐. 不同林分杨树云斑天牛种群空间格局地统计学分析[J]. 林业科学, 2018, 54(3): 83-90. |
[5] | 黄绢, 陈存, 张伟溪, 丁昌俊, 苏晓华, 黄秦军. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5): 8-15. |
[6] | 尹吴, 孙伟博, 周燕, 诸葛强. 毛果杨Rubisco活化酶基因的克隆与功能分析[J]. 林业科学, 2017, 53(4): 83-95. |
[7] | 章小铃, 王留强, 孙佩, 吴立栓, 樊玮, 张进, 卢孟柱, 胡建军. 杨树不同种质花粉萌发和致敏蛋白的差异[J]. 林业科学, 2017, 53(2): 54-64. |
[8] | 李真, 王留强, 卢孟柱. 毛白杨PtoWOX11/12a对杨树扦插苗生长发育的影响[J]. 林业科学, 2017, 53(11): 69-76. |
[9] | 储文渊, 王玉娇, 朱东悦, 陈竹, 严涵薇, 项艳. 盐和干旱胁迫下杨树新内参基因的筛选[J]. 林业科学, 2017, 53(10): 70-79. |
[10] | 曹国玉, 李继祥, 买买提库尔班·阿力, 李开花, 胡建军. 杨树良种‘北杨’[J]. 林业科学, 2016, 52(9): 156-156. |
[11] | 张利, 徐向东, 王丽娟, 卢孟柱. 杨树蔗糖转运体基因PagSUT4的鉴定及功能分析[J]. 林业科学, 2016, 52(8): 21-28. |
[12] | 黄绢, 李丹, 王宁宁, 苏晓华, 黄秦军. 不同配置方式杨树超短轮伐人工林光合特性及生长差异[J]. 林业科学, 2016, 52(8): 131-137. |
[13] | 陈盼飞, 任亚超, 张军, 王进茂, 杨敏生. 8年生嫁接转基因杨树Bt毒蛋白的表达与运输[J]. 林业科学, 2016, 52(7): 46-52. |
[14] | 王文波, 王延平, 王华田, 马雪松, 伊文慧. 杨树人工林连作与轮作对土壤氮素细菌类群和氮素代谢的影响[J]. 林业科学, 2016, 52(5): 45-54. |
[15] | 李开花, 胡建军. 杨树良种‘创新杨’[J]. 林业科学, 2016, 52(3): 130-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||