|
丁霄, 隋炯明, 王晶珊, 等. 以木糖异构酶基因作为选择标记的花生遗传转化. 核农学报, 2012, 26 (3): 444- 448.
|
|
Ding X , Sui J M , Wang J S , et al. The genetic transformation of peanut using xylose isomerase gene as a selection marker. Journal of Nuclear Agricultural Sciences, 2012, 26 (3): 444- 448.
|
|
郭新梅, 张晓东, 梁荣奇, 等. 以木糖异构酶基因为筛选标记的玉米遗传转化. 植物生理与分子生物学报, 2007, 33 (6): 547- 552.
|
|
Gou X M , Zhang X D , Liang R Q , et al. Maize transformation using xylose isomerase gene as a selection marker. Journal of Plant Physiology and Molecular Biology, 2007, 33 (6): 547- 552.
|
|
黄天伟. 2009. 果聚糖蔗糖转移酶(SacB)基因转化二色胡枝子的研究. 北京: 北京林业大学硕士学位论文, 19-28.
|
|
Huang T W. 2009. Studies on transformation of Lespedeza bicolor with SacB gene. Beijing: MS thesis of Beijing Forestry University, 19-28. [in Chinese]
|
|
穆永光. 2007. 非盐碱生境的二种豆科灌木盐碱耐性研究. 长春: 东北师范大学硕士学位论文, 11-14.
|
|
Mu Y G. 2007. Study on saline-alkali tolerance of two species of leguminous shrubs in non-saline-alkali habitats. Changchun: MS thesis of Northeast Normal University, 11-14. [in Chinese]
|
|
王婷, 李进军, 吴跃明, 等. 2008. 甘露糖阳性选择系统的建立及在紫花苜蓿转基因中的应用//中国畜牧兽医学会动物营养学分会第十次学术研讨会论文集. 北京: 中国农业科学技术出版社.
|
|
Wang T, Li J J, Wu Y M, et al. 2008. Establishment of mannose positive selection system and its application in transformation of Medicago sativa L. //Proceedings of the 10th symposium of Animal Nutrition Branch, Chinese Society of Animal Husbandry and Veterinary Science. Beijing: China Agricultural Science and Technology Press. [in Chinese]
|
|
韦正乙. 2007. 利用木糖选择系统获得HAL1转基因百脉根(Lotus cirniculatus)植株及耐盐性鉴定. 长春: 东北师范大学硕士学位论文, 1-4.
|
|
Wei Z Y. 2007. Getting HAL1 transgenic plants of Lotus cirniculatus by using xylose selective system and identification for salt tolerance. Changchun: MS thesis of Northeast Normal University, 1-4. [in Chinese]
|
|
解小娟, 杨晓红, 陈晓阳. 遮荫对转BADH基因的美丽胡枝子叶片形态和光合特性的影响. 林业科学, 2013, 49 (3): 33- 42.
|
|
Xie X J , Yang X H , Chen X Y . Effects of shading on leaf shape and photosynthetic characteristics of the transgenic Lespedeza formosa with expressing BADH gene. Scientia Silvae Sinicae, 2013, 49 (3): 33- 42.
|
|
谢鑫星, 路扬, 梁晶, 等. 高效农杆菌介导的紫花苜蓿遗传转化体系的建立. 中国农业科技导报, 2010, 12 (1): 128- 134.
doi: 10.3969/j.issn.1008-0864.2010.01.22
|
|
Xie X X , Lu Y , Liang J , et al. Establishment of an efficient Agrobacterium-mediated transformation system for genetic improvement of Alfalfa (Medicago sativaL). Journal of Agricultural Science and Technology, 2010, 12 (1): 128- 134.
doi: 10.3969/j.issn.1008-0864.2010.01.22
|
|
闫新甫, 李润植, 苗泽伟, 等. 转基因植物. 北京: 科学出版社, 2003: 154- 193.
|
|
Yan X P , Li R Z , Miao Z W , et al. Transgenic plant. Beijing: Science Press, 2003: 154- 193.
|
|
杨晓红, 付宇辰, 张民民, 等. 2个胡枝子新品种嫩枝扦插繁殖技术研究. 江西农业大学学报, 2019, 41 (1): 99- 106.
|
|
Yang X H , Fu Y C , Zhang M M , et al. A study of the techniques for the softwood cutting propagation of two new varieties of Lespedeza bicolor Turcz. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41 (1): 99- 106.
|
|
叶纨芝, 曹家树, 曾广文. 基因工程植物商品化生产面临的问题与前景. 植物学通报, 2000, 17 (5): 394- 400.
doi: 10.3969/j.issn.1674-3466.2000.05.002
|
|
Ye W Z , Cao J S , Zeng G W . Issues and challenges about plant gene engineering to commercial production. Chinese Bulletin of Botany, 2000, 17 (5): 394- 400.
doi: 10.3969/j.issn.1674-3466.2000.05.002
|
|
张宁, 司怀军, 李学才, 等. 根癌农杆菌介导的马铃薯高效遗传转化体系的研究. 中国马铃薯, 2004, 18 (3): 132- 135.
doi: 10.3969/j.issn.1672-3635.2004.03.002
|
|
Zhang N, Si H J, Li X C, et al. An efficient transformation system of potato mediated by Agrobacterium tumefaciens. Chinese Potato Journal, 18(3): 132-135. [in Chinese]
|
|
赵建华, 李浩霞, 尹跃, 等. 枸杞木糖异构酶基因LbxylA的克隆、原核表达及多克隆抗体的制备. 食品科学, 2019, 40 (10): 77- 83.
doi: 10.7506/spkx1002-6630-20180528-382
|
|
Zhao J H , Li H X , Yin Y , et al. Cloning and prokaryotic expression of the xylose isomerase gene(LbxylA) from Chinese wolfberry (Lycium barbarum Linn. ) fruit and preparation of polyclonal antibody against the fused protein. Food Science, 2019, 40 (10): 77- 83.
doi: 10.7506/spkx1002-6630-20180528-382
|
|
朱军, 韩锁义, 袁美, 等. 农杆菌介导的花生遗传转化条件优化. 中国油料作物学报, 2018, 40 (2): 191- 198.
|
|
Zhu J , Han S Y , Yuan M , et al. Optimization of Agrobacterium tumefaciens-mediated transformation in peanut. Chinese Journal of Oil Crop Science, 2018, 40 (2): 191- 198.
|
|
Bříza J , Pavingerová D , Přikrylová P , et al. Use of phosphomannose isomerase-based selection system for Agrobacterium-mediated transformation of tomato and potato. Biologia Plantarum, 2008, 52 (3): 453- 461.
doi: 10.1007/s10535-008-0090-8
|
|
Chen T H H , Murata N . Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 2008, 13 (9): 499- 505.
doi: 10.1016/j.tplants.2008.06.007
|
|
Chen T H H , Murata N . Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell and Environment, 2011, 34 (1): 1- 20.
doi: 10.1111/j.1365-3040.2010.02232.x
|
|
Daniell H , Muthukumar B , Lee S B . Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Current Genetics, 2001, 39 (2): 109- 116.
doi: 10.1007/s002940100185
|
|
Egnin M , Mora A , Prakash C S . Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L. ). In Vitro Cellular & Developmental Biology-Plant, 1998, 34 (4): 310- 318.
doi: 10.1007/BF02822740
|
|
Erlich H A . PCR Technology. New York: Stockon Press, 1989: 17- 22.
|
|
Ewa U W , Andrea L , Uta R T , et al. Expression of a bacterial xylose isomerase in potato tubers results in an altered hexose composition and a consequent induction of metabolism. Plant Cell Physiology, 2003, 44 (12): 1359- 1367.
doi: 10.1093/pcp/pcg166
|
|
Haldrup A , Petersen S G , Okkels F T . Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Reports, 1998a, 18, 76- 81.
doi: 10.1007/s002990050535
|
|
Haldrup A , Petersen S G , Okkels F T . The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Molecular Biology, 1998b, 37, 287- 296.
doi: 10.1023/A:1005910417789
|
|
Haldrup A , Noerremark M , Okkels F T . Plant selection principle based on xylose isomerase. In Vitro Cell Development, 2001, 37 (2): 114- 119.
doi: 10.1007/s11627-001-0022-1
|
|
Ishida Y , Saito H , Ohta S , et al. High efficiency transformation of maize(Zea mays L. ) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 1996, 14, 745- 750.
|
|
Kristo P , Saarelainen R , Fagerström R , et al. Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley. European Journal of Biochemistry, 1996, 237 (1): 240- 246.
doi: 10.1111/j.1432-1033.1996.0240n.x
|
|
Lilius G , Mejare A , Hofvander P , et al. Enhanced fructose levels in field grown potato tubers expressing a thermostable glucose isomerase. Biotechnology Letters, 2000, 22, 1035- 1041.
doi: 10.1023/A:1005618110912
|
|
McNeil S D , Nuccio M L , Hanson A D . Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Journal Plant Physiology, 1999, 120 (4): 945- 950.
|
|
Mert M J , Rose S H , La Grange D C , et al. Quantitative metabolomics of a xylose-utilizing Saccharomyces cerevisiae strain expressing the Bacteroides thetaiotaomicron xylose isomerase on glucose and xylose. Journal of Industrial Microbiology & Biotechnology, 2017, 44 (10): 1459- 1470.
|
|
Miki B , McHugh S . Selectable marker genes in transgenic plants: applications, alternatives and biosafety. Journal of Biotechnology, 2004, 107 (3): 193- 232.
doi: 10.1016/j.jbiotec.2003.10.011
|
|
Negrotto D , Jolley M , Beer S , et al. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L. ) via Agrobacterium transformation. Plant Cell Reports, 2000, 19, 798- 803.
doi: 10.1007/s002999900187
|
|
Rhodes D , Hanson A D . Quatemary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2003, 44 (1): 357- 384.
|
|
Sakamoto A , Murata N . Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Journal of Experimental Botany, 2000, 51, 81- 88.
doi: 10.1093/jexbot/51.342.81
|
|
Sathya R , Mohan R S , Varalakshmi P , et al. Purification and kinetic behavior of glucose isomerase from Streptomyces lividans RSU26. Saudi Journal of Biological Sciences, 2020, 27 (4): 1117- 1123.
doi: 10.1016/j.sjbs.2019.12.024
|
|
Takabe T, Rai V, Hibino T. 2006. Metabolic engineering of glycinebetaine//Takabe T, Rai V, Hibino T. Abiotic stress tolerance in plants. Dordrecht, The Netherlands: Springer, 137-151.
|
|
Van Maris A J , Winkler A A , Kuyper M , et al. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Advances in Biochemical Engineering/Biotechnology, 2008, 108, 179- 204.
|