林业科学 ›› 2021, Vol. 57 ›› Issue (6): 85-92.doi: 10.11707/j.1001-7488.20210609
蔡金峰,杨晓明,郁万文,汪贵斌,曹福亮*
收稿日期:
2020-09-29
出版日期:
2021-06-25
发布日期:
2021-08-06
通讯作者:
曹福亮
基金资助:
Jinfeng Cai,Xiaoming Yang,Wanwen Yu,Guibin Wang,Fuliang Cao*
Received:
2020-09-29
Online:
2021-06-25
Published:
2021-08-06
Contact:
Fuliang Cao
摘要:
目的: 基于转录组测序数据开发苦楝SSR标记,为苦楝种质资源的选育、评价和遗传改良提供理论基础和科学依据。方法: 利用Illumina HiSeqTM 2500平台对苦楝叶片进行高通量测序,分别利用Trinity、MISA软件对转录组数据进行拼接组装、序列检索及SSR分布类型和特征分析。采用Primer 3软件设计合成100对SSR引物,分别用2%琼脂糖凝胶电泳和PAGE凝胶电泳进行初步筛选和多态性筛选。结果: 共获得Unigenes 20 077条,平均长度为1 431.82 bp,N50为1 955 bp;对Unigenes进行SSR位点的发掘和分析,发现4 116条Unigenes序列中含有5 469个SSR位点,SSR的发生频率为20.50%,平均分布距离为8.74 kb;单、二、三核苷酸重复单元分别占总SSR的50.23%、24.43%和22.11%;SSR重复单元以6~10次重复的最多,占总数的51.27%。筛选出16对多态性引物并进行PCR扩增,共检测到56个等位基因片段,平均每个位点含3.5个,平均有效等位基因数为2.31个,平均Shannon多样性指数I为0.861,平均多态性信息含量PIC为0.507。结论: 苦楝转录组SSR位点具有较高的出现频率和分布密度,基元类型和重复次数相对较高,具有高多态性的潜能,可以进行有目的的引物设计和开发。开发的16对SSR引物在苦楝上可检测到较高的多态信息含量,进一步丰富了楝科现有SSR标记数据库资源,可为楝科植物在基因组水平上的遗传多样性分析和分子辅助育种等提供参考。
中图分类号:
蔡金峰,杨晓明,郁万文,汪贵斌,曹福亮. 基于苦楝转录组测序的SSR分子标记开发[J]. 林业科学, 2021, 57(6): 85-92.
Jinfeng Cai,Xiaoming Yang,Wanwen Yu,Guibin Wang,Fuliang Cao. Development of SSR Molecular Markers Based on Transcriptome Sequencing of Melia azedarach[J]. Scientia Silvae Sinicae, 2021, 57(6): 85-92.
表1
苦楝各种源样本数量"
种源 Provenances | 样本数 Sample number |
江苏南京Nanjing, Jiangsu | 10 |
江苏邳州Pizhou, Jiangsu | 16 |
江苏泰兴Taixing, Jiangsu | 11 |
山东东明Dongming, Shandong | 6 |
山东东营Dongying, Shandong | 7 |
江西南昌Nanchang, Jiangxi | 5 |
江西井冈山Jinggangshan, Jiangxi | 4 |
河南信阳Xinyang, Henan | 4 |
安徽合肥Hefei, Anhui | 4 |
广东汕头Shantou, Guangdong | 6 |
广西南宁Nanning, Guangxi | 8 |
湖南长沙Changsha, Hunan | 3 |
湖北荆州Jingzhou, Hubei | 5 |
浙江临安Lin’an, Zhejiang | 11 |
浙江乐清Yueqing, Zhejiang | 6 |
合计Total | 106 |
表3
苦楝转录组SSR各重复类型的分布特点"
重复类型 Repeat type | SSR数量 Number of SSR | 百分比 Percentage(%) | 分布频率 Frequency(%) | 平均距离 Average distance/kb | 平均长度 Average length/bp |
单核苷酸Mononucleotide | 2 747 | 50.23 | 13.68 | 17.40 | 11.81 |
二核苷酸Dinucleotide | 1 336 | 24.43 | 6.67 | 35.78 | 18.46 |
三核苷酸Trinucleotide | 1 209 | 22.10 | 6.02 | 39.54 | 18.28 |
四核苷酸Tetranucleotide | 117 | 2.14 | 0.58 | 408.59 | 21.18 |
五核苷酸Pentanucleotide | 31 | 0.57 | 0.15 | 1 542.11 | 26.89 |
六核苷酸Hexanucleotide | 29 | 0.53 | 0.14 | 1 648.47 | 33.46 |
总计Total | 5 469 | 100 | 27.24 | 8.74 | 19.41 |
表4
苦楝转录组SSR各重复基元类型及数量"
重复类型 Repeat type | 基元种类数 Number of motif type | 重复基元Repeat motif | 数目Number | 比例 Percentage(%) |
单核苷酸 Mononucleotide | 2 | A/T | 2 736 | 50.03 |
C/G | 11 | 0.20 | ||
二核苷酸 Dinucleotide | 4 | AG/CT | 700 | 12.79 |
AT/AT | 497 | 9.09 | ||
AC/GT | 135 | 2.47 | ||
CG/CG | 4 | 0.07 | ||
三核苷酸 Trinucleotide | 10 | AAG/CTT | 355 | 6.49 |
AAT/ATT | 178 | 3.25 | ||
ATC/ATG | 162 | 2.96 | ||
AGC/CTG | 154 | 2.82 | ||
其他类型Other types | 360 | 6.58 | ||
四核苷酸 Tetranucleotide | 24 | AAAG/CTTT | 16 | 0.29 |
AAAT/ATTT | 20 | 0.37 | ||
ACAT/ATGT | 14 | 0.26 | ||
其他类型Other types | 67 | 1.23 | ||
五核苷酸 Pentanucleotide | 25 | AAGAG/CTCTT | 3 | 0.05 |
AAAAG/CTTTT | 2 | 0.04 | ||
AAATT/AATTT | 2 | 0.04 | ||
其他类型Other types | 24 | 0.44 | ||
六核苷酸 Hexanucleotide | 25 | AAGATG/ATCTTC | 3 | 0.05 |
其他类型Other types | 26 | 0.48 | ||
总计Total | 90 | 5 469 | 100 |
表5
苦楝转录组SSR各重复类型的重复次数"
重复类型 Repeat type | 重复次数Repeat number | |||
1~5 | 6~10 | 11~15 | >15 | |
单核苷酸Mononucleotide | 0 | 1 173 | 1 341 | 233 |
二核苷酸Dinucleotide | 0 | 990 | 224 | 122 |
三核苷酸Trinucleotide | 594 | 588 | 21 | 6 |
四核苷酸Tetranucleotide | 84 | 33 | 0 | 0 |
五核苷酸Pentanucleotide | 21 | 10 | 0 | 0 |
六核苷酸Hexanucleotide | 19 | 10 | 0 | 0 |
总计Total | 718 | 2 804 | 1 586 | 361 |
比例Percentage(%) | 13.13 | 51.27 | 29.00 | 0.66 |
表6
苦楝16对多态性SSR引物信息"
引物编号 Primer number | 重复基元 Repeat motif | 引物序列 Primer sequence (5′—3′) | 退火温度 Tm/℃ | 预计长度 Expected size/bp | 等位基因数 Observed number of alleles(Na) | 有效等位基因数 Effective number of alleles(Ne) | Shannon 信息指数 Shannon’s information index(I) | 多态信息含量 Polymorphic information content (PIC) |
KL-P2-5 | (AG)10 | F: CAACAGTCCTCCCTGCAAAT R: GTCACTCGCAATGATGTTGG | 59 | 225 | 3 | 1.291 | 0.436 | 0.523 |
KL-P2-6 | (GA)27 | F: CTCTTTGTGCCCTCATTCGT R: TGCTCATAATGCCATCCAAA | 60 | 131 | 5 | 3.059 | 1.242 | 0.613 |
KL-P2-9 | (AG)11 | F: CATTGTCCTTTCTTGCCGTT R: TGTCTGGTCAATGATGCGTT | 59 | 206 | 5 | 2.866 | 1.191 | 0.653 |
KL-P3-2 | (TTA)8 | F: ATTACACCCCCTCCCAAAAA R: AGGTGAGAATGGACGAATGG | 60 | 244 | 5 | 2.551 | 1.073 | 0.641 |
KL-P3-7 | (AGT)11 | F: CAACACGAGACGAGACCTGA R: TCGTTTTGAGGTGAGGAACC | 60 | 176 | 5 | 2.398 | 1.054 | 0.598 |
KL-P3-8 | (CCT)5 | F: CCTCTTTCTCCTTGTCCACG R: TGTGTTCCTCGTACACCCAA | 60 | 106 | 5 | 4.420 | 1.535 | 0.654 |
KL-P3-11 | (AAT)7 | F: CACCAAAGTGGCACAAGAGA R: GGACAAGAGAGGCAACAATCA | 60 | 277 | 2 | 1.634 | 0.576 | 0.385 |
KL-P3-12 | (GAA)5 | F: TTCCACAATGTAAGCCACGA R: ATGACTCGCGCAATATCAGA | 58 | 115 | 2 | 1.840 | 0.649 | 0.423 |
KL-P4-2 | (TAGC)5 | F: GAAACTGTCCGCAACAAACA R: GAACAAGAGGGATTCGTGGA | 59 | 263 | 3 | 2.017 | 0.721 | 0.486 |
KL-P4-10 | (TTTC)5 | F: CTCCCCTGCCTGTTATGGTA R: AGGGGCCAGAGCTGCTATAC | 57 | 202 | 3 | 1.796 | 0.659 | 0.478 |
KL-P4-14 | (AAAT)5 | F: CAAGGGCCCAACAAAAGTAA R: CCAGTAAAAATCCTGTCCCG | 60 | 272 | 2 | 1.195 | 0.301 | 0.399 |
KL-P5-2 | (TTTAT)5 | F: TTTGCAATTGAACACCTGGA R: TTCCACCTCTCTCCCAAGAA | 60 | 266 | 5 | 4.193 | 1.482 | 0.692 |
KL-P5-4 | (GACAT)5 | F: CTGAAACCCCGAAATTGAAA R: CGAAGACCATCATCTGGGAT | 59 | 208 | 2 | 1.620 | 0.571 | 0.356 |
KL-P5-15 | (CAATG)5 | F: AAAACAAAAGCCAAAAGGGG R: AGGCAGAGCATCAAACAACC | 59 | 172 | 2 | 1.220 | 0.325 | 0.324 |
KL-P6-1 | (AGGGTG)5 | F: TACGTGGAGGGAATACAGCC R: ATCTTCCTCGCGATTTTCCT | 59 | 261 | 4 | 2.629 | 1.069 | 0.458 |
KL-P6-2 | (GGCTGT)5 | F: CGTATTGTTCGTTTCTCCTGAA R: ACAGCAAGCGGGCTAGTTTA | 60 | 265 | 3 | 2.236 | 0.886 | 0.421 |
均值Mean | 3.5 | 2.310 | 0.861 | 0.507 |
陈琪, 杨华, 韦朝领, 等. 基于茶树芽叶转录组序列的EST-SSR分布特征研究. 安徽农业大学学报, 2016, 43 (2): 170- 175. | |
Chen Q , Yang H , Wei C L , et al. Density and characterization of EST-SSR in tea (Camellia sinensis) bud and leaf transcriptome. Journal of Anhui Agricultural University, 2016, 43 (2): 170- 175. | |
陈全求, 詹先进, 蓝家样, 等. EST分子标记开发研究进展. 中国农学通报, 2008, 24 (9): 72- 77. | |
Chen Q Q , Zhan X J , Lan J Y , et al. Study progress in development of EST(expressed sequence tags). Chinese Agricultural Science Bulletin, 2008, 24 (9): 72- 77. | |
陈羡德, 陈礼光, 陈珺, 等. 不同来源苦楝种质资源遗传多样性的RAPD分析. 漳州师范学院学报: 自然科学版, 2010, 23 (4): 118- 122.
doi: 10.3969/j.issn.1008-7826.2010.04.023 |
|
Chen X D , Chen L G , Chen J , et al. Genetic diversity analysis of Melia azedarach Linn of different provenances by RAPD. Journal of Zhangzhou Teachers College: Natural Science Edition, 2010, 23 (4): 118- 122.
doi: 10.3969/j.issn.1008-7826.2010.04.023 |
|
程诗明. 2005. 苦楝聚合群体遗传多样性研究与核心种质构建. 北京: 中国林业科学研究院博士学位论文. | |
Cheng S M. 2005. Study on genetic diversity of multitudinous populations and construction of core germplasm in Melia azedarach. Beijing: PhD thesis of Chinese Academy of Forestry. [in Chinese] | |
程诗明, 顾万春. 苦楝遗传资源学研究进展及其展望. 浙江林业科技, 2007, 27 (2): 64- 69.
doi: 10.3969/j.issn.1001-3776.2007.02.017 |
|
Cheng S M , Gu W C . Research progress and prospects on genetic resources of Melia azedarach. Journal of Zhejiang Forestry Science and Technology, 2007, 27 (2): 64- 69.
doi: 10.3969/j.issn.1001-3776.2007.02.017 |
|
董黎, 张江涛, 文彦忠, 等. 刺槐Genomic-SSR与EST-SSR遗传差异性分析. 中国农学通报, 2019, 35 (19): 49- 57.
doi: 10.11924/j.issn.1000-6850.casb18030010 |
|
Dong L , Zhang J T , Wen Y Z , et al. Genetic differences of black locust (Robinia pseudoacacia) with genomic-SSR and EST-SSR markers. Chinese Agricultural Science Bulletin, 2019, 35 (19): 49- 57.
doi: 10.11924/j.issn.1000-6850.casb18030010 |
|
黄海燕. 2013. 杜仲EST-SSR引物开发及遗传多样性研究. 北京: 中国林业科学研究院硕士学位论文. | |
Huang H Y. 2013. On EST-SSR primer design and genetic diversity in Eucommia ulmoides Oliver. Beijing: MS thesis of Chinese Academy of Forestry. [in Chinese] | |
李立新. 2017. 基于花椒转录组序列的SSR分子标记开发及种质资源鉴定. 杨凌: 西北农林科技大学硕士学位论文. | |
Li L X. 2017. Development of SSR molecular markers based on transcriptome sequence and identification of Zanthoxylum germplasm. Yangling: MS thesis of Northwest A & F University. [in Chinese] | |
李清莹. 2018. 火力楠种质资源遗传多样性研究. 北京: 中国林业科学研究院博士学位论文. | |
Li Q Y. 2018. Genetic diversity of germplasm resources of Michelia macclurei Dandy. Beijing: PhD thesis of Chinese Academy of Forestry. [in Chinese] | |
李珊珊, 曾艳飞, 何彩云, 等. 基于沙棘转录组序列开发EST-SSR分子标记. 林业科学研究, 2017, 30 (1): 69- 74. | |
Li S S , Zeng Y F , He C Y , et al. Development of EST-SSR markers based on Seabuckthorn transcriptomic sequences. Forest Research, 2017, 30 (1): 69- 74. | |
李秀宇, 郭琪, 董黎, 等. 山西省吉县刺槐无性系种质遗传多样性的EST-SSR分析. 北京林业大学学报, 2019, 41 (7): 39- 48. | |
Li X Y , Guo Q , Dong L , et al. EST-SSR analysis of genetic diversity of Robinia pseudoacacia clones in Jixian county, Shanxi province of northern China. Journal of Beijing Forestry University, 2019, 41 (7): 39- 48. | |
廖柏勇, 王芳, 陈丽君, 等. 基于SRAP分子标记的苦楝种质资源遗传多样性分析. 林业科学, 2016, 52 (4): 48- 58. | |
Liao B Y , Wang F , Chen L J , et al. Genetic diversity of germplasm resources of Melia azedarach revealed by SRAP markers. Scientia Silvae Sinicae, 2016, 52 (4): 48- 58. | |
林雪莹. 2018. 水松EST-SSR分子标记开发及群体遗传变异分析. 长沙: 中南林业科技大学硕士学位论文. | |
Lin X Y. 2018. Development of EST-SSR markers and population genetic variation in Glyptostrobus pensilis. Changsha: MS thesis of Central South University of Forestry & Technology. [in Chinese] | |
刘欢, 张新全, 马啸, 等. 基于荧光检测技术的多花黑麦草EST-SSR指纹图谱的构建. 中国农业科学, 2017, 50 (3): 437- 450. | |
Liu H , Zhang X Q , Ma X , et al. Construction of EST-SSR fingerprinting based on fluorescence detection technology for Italian ryegrass. Scientia Agricultura Sinica, 2017, 50 (3): 437- 450. | |
时小东, 朱学慧, 盛玉珍, 等. 基于转录组序列的楠木SSR分子标记开发. 林业科学, 2016, 52 (11): 71- 78.
doi: 10.11707/j.1001-7488.20161109 |
|
Shi X D , Zhu X H , Sheng Y Z , et al. Development of SSR markers based on transcriptome sequence of Phoebe zhennan. Scientia Silvae Sinicae, 2016, 52 (11): 71- 78.
doi: 10.11707/j.1001-7488.20161109 |
|
王芳, 廖柏勇, 李培, 等. 苦楝SSR-PCR反应体系优化及引物筛选. 林业科学研究, 2016, 29 (2): 167- 175.
doi: 10.3969/j.issn.1001-1498.2016.02.003 |
|
Wang F , Liao B Y , Li P , et al. Optimization of SSR-PCR reaction system and primer screening of Melia azedarach. Forest Research, 2016, 29 (2): 167- 175.
doi: 10.3969/j.issn.1001-1498.2016.02.003 |
|
夏海涛. 2009. 药用苦楝遗传多样性ISSR分析和遗传变异规律研究. 福州: 福建农林大学硕士学位论文. | |
Xia H T. 2009. The research on genetic diversity by ISSR analysis and genetic variation laws of medicinal Melia azedarach. Fuzhou: MS thesis of Fujian Agriculture and Forestry University. [in Chinese] | |
徐杨, 邓丽丽, 周丽, 等. 2016. 云南松EST-SSR引物在其近缘种中通用性的研究. 西南林业大学学报, 36(1): 16-20. | |
Xu Y, Deng L L, Zhou L, et al. 2016. The transferability analysis of microsatellite markers from expressed sequence tags of Pinus yunnanensis to its close related species. Journal of Southwest Forestry University, 36(1): 16-20. [in Chinese] | |
胥猛, 李火根. 鹅掌楸EST-SSR引物开发及通用性分析. 分子植物育种, 2008, 6 (3): 615- 618.
doi: 10.3969/j.issn.1672-416X.2008.03.035 |
|
Xu M , Li H G . Development and characterization of microsatellite markers from expressed sequence tags for Liriodendron. Molecular Plant Breeding, 2008, 6 (3): 615- 618.
doi: 10.3969/j.issn.1672-416X.2008.03.035 |
|
易敏, 张露, 雷蕾, 等. 湿地松转录组SSR分析及EST-SSR标记开发. 南京林业大学学报: 自然科学版, 2020, 44 (2): 75- 83. | |
Yi M , Zhang L , Lei L , et al. Analysis of SSR information in transcriptome and development of EST-SSR molecular markers in Pinus elliottii Engelm. Journal of Nanjing Forestry University: Natural Science Edition, 2020, 44 (2): 75- 83. | |
应东山, 唐浩, 韩瑞玺, 等. 基于转录组测序的油梨EST-SSR引物开发. 热带作物学报, 2018, 39 (12): 2446- 2451.
doi: 10.3969/j.issn.1000-2561.2018.12.017 |
|
Ying D S , Tang H , Han R X , et al. Development EST-SSR markers based on transcriptome sequences in avocado. Chinese Journal of Tropical Crops, 2018, 39 (12): 2446- 2451.
doi: 10.3969/j.issn.1000-2561.2018.12.017 |
|
张文秀, 张丽, 寇一翾, 等. 中国濒危植物金钱松转录组测序及生物信息学分析. 江西农业大学学报, 2019, 41 (4): 761- 772. | |
Zhang W X , Zhang L , Kou Y X , et al. Transcriptome sequencing and bioinformatic analysis of Pseudolarix amabilis, an endangered gymnosperm in China. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41 (4): 761- 772. | |
张振, 张含国, 莫迟, 等. 红松转录组SSR分析及EST-SSR标记开发. 林业科学, 2015, 51 (8): 114- 120. | |
Zhang Z , Zhang H G , Mo C , et al. Transcriptome sequencing analysis and development of EST-SSR markers for Pinus koraiensis. Scientia Silvae Sinicae, 2015, 51 (8): 114- 120. | |
郑万钧. 中国树木志: 第四卷. 北京: 中国林业出版社, 2004: 4128- 4129. | |
Zheng W J . Sylva Sinica: Volume IV. Beijing: China Forestry Publishing House, 2004: 4128- 4129. | |
Anoshiya A , Özlem A , Muhammed U D , et al. Evaluation of genetic diversity among Melia azedarach L. (Meliaceae) with RAPD markers. Fresenius Environmental Bulletin, 2016, 25 (7): 2374- 2382. | |
Botstein D , White R L , Skolnick M , et al. Construction of genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32 (3): 314- 331. | |
Eujayl I , Sorrells M , Baum M , et al. Assessment of genotypic variation among cultivated wheat based on EST-SSRs and genomic SSRs. Euphytica, 2001, 119 (12): 39- 43.
doi: 10.1023/A:1017537720475 |
|
Olmos S E , Lavia G , Renzo M D , et al. Genetic analysis of variation in micropropagated plants of Melia azedarach L. In Vitro Cellular & Developmental Biology Plant, 2002, 38 (6): 617- 622.
doi: 10.1079/IVP2002319 |
|
Peakall R , Smous P . GenAlEx 6. 5:genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012, 28 (19): 2537- 2539. | |
Rozen S , Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols. New Jersey: Humana Press, 2000. | |
Scott K D , Eggler P , Seaton G , et al. Analysis of SSRs derived from grape ESTs. Theoretical and Applied Genetics, 2000, 100 (5): 723- 726.
doi: 10.1007/s001220051344 |
|
Temnykh S , Declerck G , Lukashova A . Computational and experimental analysis of microsatellites in rice (Oryza sativa L. ): frequency, length variation, transposon associations and genetic marker potential. Genome Research, 2001, 11 (8): 1441- 1452. | |
Van K , Hwang E Y , Kim M Y , et al. Discovery of single nucleotide polymorphisms in soybean using primers designed from ESTs. Euphytica, 2004, 139 (2): 147- 157.
doi: 10.1007/s10681-004-2561-0 |
|
Varshney R K , Graner A , Sorrells M E . Genic microsatellite markers in plants: features and applications. Trends in Biotechnology, 2005, 23 (1): 48- 55.
doi: 10.1016/j.tibtech.2004.11.005 |
[1] | 贺然,王瑞珍,应玥,曲良建,张永安. 伊氏线虫真菌碳氮条件下的表型和毒力基因表达差异[J]. 林业科学, 2021, 57(4): 107-115. |
[2] | 朱沛煌,陈妤,朱灵芝,李荣,季孔庶. 马尾松转录组密码子使用偏好性及其影响因素[J]. 林业科学, 2020, 56(4): 74-81. |
[3] | 陆小雨,陈竹,唐菲,傅松玲,任杰. 转录组与代谢组联合解析红花槭叶片中花青素苷变化机制[J]. 林业科学, 2020, 56(1): 38-53. |
[4] | 赵清泉, 池玉杰, 张健, 冯连荣. 偏肿革裥菌在木质环境下转录组构建与相关基因表达分析[J]. 林业科学, 2019, 55(8): 95-105. |
[5] | 韩小红, 卢赐鼎, 华银, 林浩宇, 是雨霏, 吴松青, 张飞萍, 梁光红. 星天牛转录组及三大解毒酶家族相关基因系统发育分析[J]. 林业科学, 2019, 55(5): 104-113. |
[6] | 刘果, 陈鸿鹏, 吴志华, 彭彦, 谢耀坚. 南美油藤种子发育过程的代谢组学和转录组学联合分析[J]. 林业科学, 2019, 55(5): 169-179. |
[7] | 张恩亮, 马玲玲, 杨如同, 李林芳, 汪庆, 李亚, 王鹏. IBA诱导楸树嫩枝扦插不定根发育的转录组分析[J]. 林业科学, 2018, 54(5): 48-61. |
[8] | 毛伟兵, 陈发菊, 王长兰, 梁宏伟. 楸树雄性不育花芽转录组测序及分析[J]. 林业科学, 2017, 53(6): 141-150. |
[9] | 唐海霞, 杜淑辉, 邢世岩, 桑亚林, 李际红, 刘晓静, 孙立民. 银杏性别决定相关基因的筛选[J]. 林业科学, 2017, 53(2): 76-82. |
[10] | 廖柏勇, 王芳, 陈丽君, 刘明骞, 欧阳昆唏, 阙青敏, 惠文凯, 李培, 陈晓阳. 基于SRAP分子标记的苦楝种质资源遗传多样性分析[J]. 林业科学, 2016, 52(4): 48-58. |
[11] | 丁昌俊, 张伟溪, 高暝, 黄秦军, 褚延广, 苏晓华. 不同生长势美洲黑杨转录组差异分析[J]. 林业科学, 2016, 52(3): 47-58. |
[12] | 时小东, 朱学慧, 盛玉珍, 庄国庆, 陈放. 基于转录组序列的楠木SSR分子标记开发[J]. 林业科学, 2016, 52(11): 71-78. |
[13] | 林开勤, 赵德刚, 李岩, 何选泽, 王韶敏. 杜仲性别相关EST-SSR标记的开发[J]. 林业科学, 2016, 52(10): 146-152. |
[14] | 张振, 张含国, 莫迟, 张磊. 红松转录组SSR分析及EST-SSR标记开发[J]. 林业科学, 2015, 51(8): 114-120. |
[15] | 陈昊, 谭晓风. 基于油脂合成期油桐种仁转录组数据的α-亚麻酸代谢途径解析[J]. 林业科学, 2015, 51(3): 41-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||