林业科学 ›› 2021, Vol. 57 ›› Issue (1): 53-63.doi: 10.11707/j.1001-7488.20210106
王力敏1,6,陈亚辉1,2,杨庆山3,4,曲日涛5,姜姜2,张金池2,张洪霞1,4,6,宋志忠1,4,6,7,*
收稿日期:
2020-02-17
出版日期:
2021-01-01
发布日期:
2021-03-10
通讯作者:
宋志忠
基金资助:
Limin Wang1,6,Yahui Chen1,2,Qingshan Yang3,4,Ritao Qu5,Jiang Jiang2,Jinchi Zhang2,Hongxia Zhang1,4,6,Zhizhong Song1,4,6,7,*
Received:
2020-02-17
Online:
2021-01-01
Published:
2021-03-10
Contact:
Zhizhong Song
摘要:
目的: 植物SKOR是典型的外向整流型Shaker类钾离子(K+)通道蛋白,介导根部K+向地上部的长距离运输。本研究克隆并鉴定杨树K+通道基因PdbSKOR,在转录水平探讨其组织特异性表达特征及对缺钾、高钾、干旱和低温胁迫的响应情况,并明确其电生理学功能。方法: 通过同源克隆法,在山新杨中鉴定并克隆1个K+通道基因PdbSKOR;运用MEGA 7.0软件构建山新杨等14种不同科属木本植物SKOR通道成员的系统进化树;利用实时荧光定量PCR分析PdbSKOR的组织特异性表达特征及在转录水平根部PdbSKOR对缺钾、高钾(60 mmol·L-1 KCl)、干旱(15% PEG6000)和低温(4℃)处理的响应情况;借助膜片钳系统研究PdbSKOR的电生理功能。结果: 在山新杨中克隆1个K+通道基因PdbSKOR(GenBank No.MT335814),其编码蛋白含有6个离子通道跨膜域(S1—S6)、环核苷酸结合域、Ankyrin锚蛋白域和KHA二聚体功能结构域,属于典型的Shaker类K+通道;14种木本植物SKOR蛋白的氨基酸一致性高达81.09%,S6跨膜区的氨基酸一致性最高(96%);不同科属植物的SKOR同源蛋白在遗传进化关系上差异较大,而同一科属植物的遗传距离较近,山新杨PbdSKOR与同属杨柳科的红皮柳的同源蛋白SpuSKOR的遗传距离最近;在PdbSKOR启动子区域预测到18种顺式作用元件,主要包括发育调控、激素响应和胁迫响应等相关的调控元件;实时荧光定量PCR表明PdbSKOR在3年生山新杨根部的相对表达量最高,其次是盛开期花和花序,在茎部、叶片和果絮中的表达量相对较低;PdbSKOR在组培幼苗根部的表达水平也是最高的,且在转录水平对高钾处理没有响应,但对缺钾、干旱和低温胁迫处理较为敏感,其中,PdbSKOR在幼苗根部的表达水平受缺钾或干旱处理的抑制均显著降低,受低温胁迫诱导而显著增强;膜片钳研究表明当细胞膜电位为+20 mV时,PdbSKOR离子通道即被激活,并记录到典型的外向整流电流,并随胞外K+浓度的降低而增大,且正向电压越大,内向整流的电流越强,表明PdbSKOR是一个电压依赖的外向整流型K+通道。结论: 从山新杨中克隆并鉴定了1个K+通道基因PdbSKOR;山新杨PdbSKOR与红皮柳SpuSKOR在系统进化关系上最近;PdbSKOR主要在山新杨根部(成年树和幼苗)表达,幼苗根部PdbSKOR在转录水平受缺钾、干旱和低温胁迫的调控;PdbSKOR是山新杨根部主导K+外排的通道。
中图分类号:
王力敏,陈亚辉,杨庆山,曲日涛,姜姜,张金池,张洪霞,宋志忠. 山新杨钾离子通道基因PdbSKOR的克隆与功能分析[J]. 林业科学, 2021, 57(1): 53-63.
Limin Wang,Yahui Chen,Qingshan Yang,Ritao Qu,Jiang Jiang,Jinchi Zhang,Hongxia Zhang,Zhizhong Song. Cloning and Functional Analysis of Potassium Channel Gene PdbSKOR in Populus davidiana×P. bolleana[J]. Scientia Silvae Sinicae, 2021, 57(1): 53-63.
表1
本文所用特异性引物"
目的 Purpose | 引物 Primer(5′ —3′) | 扩增产物大小 Amplicon size/bp |
PdbSKOR CDS扩增 Amplification of PdbSKOR CDS | F: ATGGATGGTCATGGCAATCACAG R: TCAAGATAAGTAATGTGTTTGA | 2 526 |
PdbSKOR启动子区域扩增 Amplification of promoter region of PdbSKOR | F: TTATTTGTTGACAAAATTAGGG R: GTTATGAATCACAGCAACCCTT | 2 000 |
PdbSKOR特异性表达引物 Specific expression primers of PdbSKOR | F: GGATTCGGACGATGATGGAGA R: GTCCATGCTCGATACCACCT | 243 |
EF1β特异性表达引物 Specific expression primers of EF1β | F: GACAAGAAGGCAGCGGAGGAGAG R: CAATGAGGGAATCCACTGACACAAG | 250 |
pTracer-CMV3-SKOR质粒构建 Construction of plasmid of pTracer-CMV3-SKOR vector | F: GAGA$\overline{{\rm{GGTACC}}}$ATGGATGGTCATGGCAATCA R: GAGA$\overline{{\rm{GCGGCCGC}}}$TCAAGATAAGTAATGTGTTTG | 2 526 |
表2
14种木本植物SKOR蛋白信息"
科 Family | 种 Species | 蛋白 Protein | 基因 IDGene ID | 编码区 CDS/bp | 氨基酸数目 Amino acid number |
杨柳科 Salicaceae | 山新杨 Populus davidiana × P.bolleana | PdbSKOR | MT335814 | 2 526 | 841 |
杨柳科 Salicaceae | 红皮柳 Salix purpurea | SpuSKOR | SapurV1A.0223s0270 | 2 532 | 843 |
桃金娘科 Myrtaceae | 巨桉 Eucalyptus grandis | EgrSKOR | Eucgr.L01971 | 2 508 | 835 |
无油樟科 Amborellaceae | 无油樟 Amborella trichopoda | AtrSKOR | evm_27.model.AmTr_v1.0_scaffold00138 | 2 292 | 763 |
锦葵科 Malvaceae | 雷蒙德氏棉 Gossypium raimondii | GraSKOR | Gorai.009G114200 | 2 493 | 830 |
大戟科 Euphorbiaceae | 木薯 Manihot esculenta | MesSKOR | Manes.02G078700 | 2 505 | 834 |
梧桐科 Sterculiaceae | 可可 Theobroma cacao | TcaSKOR | Thecc1EG027138t2 | 2 481 | 826 |
葡萄科 Vitaceae | 葡萄 Vitis vinifera | VviSKOR | GSVIVT01030667001 | 2 385 | 794 |
蔷薇科 Rosaceae | 桃 Prunus persica | PpeSKOR | Prupe.3G164900 | 2 493 | 830 |
蔷薇科 Rosaceae | 白梨 Pyrus bretschneideri | PbrSKOR | Pbr022827 | 2 521 | 839 |
蔷薇科 Rosaceae | 苹果 Malus domestica | MdoSKOR | MDP0000263295 | 2 523 | 840 |
蔷薇科 Rosaceae | 番木瓜 Carica papaya | CpaSKOR | evm.model.supercontig_116.82 | 2 376 | 791 |
芸香科 Rutaceae | 甜橙 Citrus sinensis | CsiSKOR | orange1.1g003425m | 2 466 | 821 |
芸香科 Rutaceae | 克莱门柚 Citrus clementina | CclSKOR | Ciclev10024904m | 2 466 | 821 |
图1
14种木本植物SKOR结构域预测及氨基酸序列一致性分析 预测的6个离子通道跨膜区(S1—S6)、通道孔P环结构(P-loop)、环核苷酸结合域(cNBD)、锚蛋白域(ANKY)和KHA二聚体结构域分别用蓝色下划线标注。 Six putative ion trans-membrane domains(S1—S6), channel pore(P-loop), cyclic nucleotide binding domain(cNBD), ankyrin domain(ANKY) and KHA dimerisation domain are highlighted with blue underline.PdbSKOR:山新杨Populus davidiana × P.bolleana; VviSKOR:葡萄Vitis vinifera;CsiSKOR:甜橙Citrus sinensis;AtrSKOR:无油樟Amborella trichopoda;TcaSKOR:可可Theobroma cacao;SpuSKOR:红皮柳Salix purpurea;MesSKOR:木薯Manihot esculenta;EgrSKOR:巨桉Eucalyptus grandis;GraSKOR:雷蒙德氏棉Gossypium raimondii;CclSKOR:克莱门柚Citrus clementina;PbrSKOR:白梨Pyrus bretschneideri;PpeSKOR:桃Prunus persica;MdoSKOR:苹果Malus domestica;CpaSKOR:番木瓜Carica papaya."
表3
PdbSKOR启动子顺式作用元件"
顺式作用元件 cis-elements | 特征序列 Characteristic sequences | 潜在调控途径 Putative regulatory pathway |
CAAT-box | CAAT | 启动子和增强子区域Promoter and enhancer regions |
O2-site | GATGATGTGG | 玉米醇溶蛋白代谢调节Zein metabolism regulation |
RY-element | CATGCATG | 种子特异性调节Seed specific regulation |
CAT-box | CATGCATG | 分生组织表达Meristem expression |
TATC-box | TATCCCA | 赤霉素响应Gibberellin response |
ABRE | ACGTG | 脱落酸响应Abscisic acid response |
TCA-element | CCATCTTTTT | 水杨酸响应Salicylic acid response |
TGA-element | AACGAC | 生长素响应Auxin response |
AE-box | AGAAACTT | 光感应Light response |
LAMP-element | CTTTATCA | 光感应Light response |
Chs-CMA1a | TTACTTAA | 光感应Light response |
Box 4 | ATTAAT | 光感应Light response |
G-Box | CACGTT | 光感应Light response |
GAGA-motif | GATAGGA | 光感应Light response |
GT1-motif | GGTTAA | 光感应Light response |
ARE | AAACCA | 厌氧诱导Anaerobic inducibility |
LTR | CCGAAA | 低温感应Low temperature response |
MBS | CAACTG | 干旱诱导Drought inducibility |
段丽婕, 王沛, 陈梦词, 等. 盐生植物小花碱茅外整流K+通道PtSKOR基因的克隆及RNAi载体构建. 分子植物育种, 2015, 13 (4): 877- 886. | |
Duan L J , Wang P , Chen M C , et al. Cloning outward-rectifying potassium channel PtSKOR gene and constructing its RNAi vector in halophyte Puccinellia tenuiflora. Molecular Plant Breeding, 2015, 13 (4): 877- 886. | |
刘丽萍, 戴逢斌, 张冲, 等. 黑果枸杞外整流钾离子通道SKOR基因的克隆及表达分析. 浙江农林大学学报, 2018, 35 (1): 104- 111. | |
Liu L P , Dai F B , Zhang C , et al. Cloning and expression analysis of the SKOR gene for an outward rectifying K+ channel in Lycium ruthenicum. Journal of Zhejiang A & F University, 2018, 35 (1): 104- 111. | |
沈静沅, 唐美玲, 杨庆山, 等. 葡萄钾离子通道基因VviSKOR的克隆、表达及电生理功能. 中国农业学报, 2020, 53 (15): 3158- 3168. | |
Shen J Y , Tang M L , Yang Q S , et al. Cloning, expression and electrophysiological function analysis of potassium channel gene VviSKOR in grape. Scientia Agricultura Sinica, 2020, 53 (15): 3158- 3168. | |
宋志忠, 郭绍雷, 马瑞娟, 等. KT/HAK/KUP家族基因在桃开花期的表达及对钾肥施放的响应分析. 中国农业科学, 2015, 48 (6): 1177- 1185. | |
Song Z Z , Guo S L , Ma R J , et al. Analysis of expression of KT/HAK/KUP family genes and their responses to potassium fertilizer application during peach flowering. Scientia Agricultura Sinica, 2015, 48 (6): 1177- 1185. | |
王壮伟, 王庆莲, 夏瑾, 等. 葡萄KEA家族基因的克隆、鉴定及表达分析. 中国农业科学, 2018, 51 (23): 4522- 4534.
doi: 10.3864/j.issn.0578-1752.2018.23.011 |
|
Wang Z W , Wang Q L , Xia J , et al. Cloning, characterization and expression analysis of K+/H+ antiporter genes in grape. Scientia Agricultura Sinica, 2018, 51 (23): 4522- 4534.
doi: 10.3864/j.issn.0578-1752.2018.23.011 |
|
Ache P , Becker D , Ivashikina N , et al. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Letters, 2000, 486 (2): 93- 98.
doi: 10.1016/S0014-5793(00)02248-1 |
|
Anderson J A , Huprikar S S , Kochian L V , et al. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89 (9): 3736- 3740.
doi: 10.1073/pnas.89.9.3736 |
|
Bauer C S , Hoth S , Haga K , et al. Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant Journal, 2000, 24 (2): 139- 214.
doi: 10.1046/j.1365-313X.2000.00844.x |
|
Boscari A , Clement M , Volkov V , et al. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant, Cell and Environment, 2009, 32 (12): 1761- 1777.
doi: 10.1111/j.1365-3040.2009.02033.x |
|
Büchsenschü K , Marten I , Becker D , et al. Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex. Planta, 2005, 222 (6): 968- 976.
doi: 10.1007/s00425-005-0038-6 |
|
Cao Y W , Crawford N M , Schroeder J I . Amino-terminus and the first 4 membrane-spanning segments of the Arabidopsis K+ channel KAT1 confer inward-rectification property of plant-animal chimeric channels. Journal of Biological Chemistry, 1995, 270 (30): 17697- 17701.
doi: 10.1074/jbc.270.30.17697 |
|
Corratgé-Faillie C , Ronzier E , Sanchez F , et al. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33. FEBS Letters, 2017, 591 (13): 1982- 1992.
doi: 10.1002/1873-3468.12687 |
|
Demidchik V , Straltsova D , Medvedev S S , et al. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 2014, 65 (5): 1259- 1270.
doi: 10.1093/jxb/eru004 |
|
Downey D , Szabo I , Ivashikina N , et al. KDC1, a novel carrot root hair K+ channel: Cloning, characterization, and expression in mammalian cells. Journal of Biological Chemistry, 2000, 275 (50): 39420- 39426.
doi: 10.1074/jbc.M002962200 |
|
Dreyer I , Porée F , Schneider A , et al. Assembly of plant Shaker-like Kout channels requires two distinct sites of the channel α-subunit. Biophysical Journal, 2004, 87 (2): 858- 872.
doi: 10.1529/biophysj.103.037671 |
|
Epstein E , Rains D W , Elzam O E . Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Sciences of the United States of America, 1963, 49 (5): 684- 692.
doi: 10.1073/pnas.49.5.684 |
|
Formentin E , Varotto S , Costa A , et al. DKT1, a novel K+ channel from carrot, forms functional heteromeric channels with KDC1. FEBS Letters, 2004, 573 (1-3): 61- 67.
doi: 10.1016/j.febslet.2004.07.052 |
|
Gaymard F , Cerutti M , Horeau C , et al. The baculovirus/insect cell system as an alternative to Xenopus oocytes, first characterization of the AKT1 K+ channel from Arabidopsis thaliana. Journal of Biological Chemistry, 1996, 271 (37): 22863- 22870.
doi: 10.1074/jbc.271.37.22863 |
|
Gaymard F , Pilot G , Lacombe B , et al. Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell, 1998, 94 (5): 647- 655.
doi: 10.1016/S0092-8674(00)81606-2 |
|
Grabov A . Plant KT/KUP/HAK potassium transporters: Single family-multiple functions. Annals of Botany, 2007, 99 (6): 1035- 1041.
doi: 10.1093/aob/mcm066 |
|
Hartje S , Zimmermann S , Klonus D , et al. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta, 2000, 210 (5): 723- 731.
doi: 10.1007/s004250050673 |
|
Hedrich R . Ion channels in plants. Physiological Reviews, 2012, 92 (4): 1777- 1811.
doi: 10.1152/physrev.00038.2011 |
|
Hosy E , Vavasseur A , Mouline K , et al. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (9): 5549- 5554.
doi: 10.1073/pnas.0733970100 |
|
Hu J , Ma Q , Kumar T . ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis. Plant Growth Regulation, 2016, 80 (2): 195- 205.
doi: 10.1007/s10725-016-0157-z |
|
Huang L T , Zhao L N , Gao L W . Constitutive expression of CmSKOR, an outward K+ channel gene from melon, in Arabidopsis thaliana involved in saline tolerance. Plant Science, 2018, 274, 492- 502.
doi: 10.1016/j.plantsci.2018.07.005 |
|
Kim H Y , Choi E H , Min M K . Differential gene expression of two outward-rectifying Shaker-like potassium channels OsSKOR and OsGORK in rice. Journal of Plant Biology, 2015, 58, 230- 235.
doi: 10.1007/s12374-015-0070-4 |
|
Kochian L V , Lucas W J . Potassium transport in corn roots: resolution of kinetics into a saturable and linear component. Plant Physiology, 1982, 70 (6): 1723- 1731.
doi: 10.1104/pp.70.6.1723 |
|
Lacombe B , Pilot G , Michard E , et al. A Shaker-like K channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell, 2000, 12 (6): 837- 851. | |
Lebaudy A , Véry A A , Sentenac H . K+ channel activity in plants: Genes, regulations and functions. FEBS Letters, 2007, 581 (12): 2357- 2366.
doi: 10.1016/j.febslet.2007.03.058 |
|
Li J , Long Y , Qi G N , et al. The OsAKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. The Plant Cell, 2014, 26 (8): 3387- 3402.
doi: 10.1105/tpc.114.123455 |
|
Lim C W , Kim S H , Choi H W , et al. The Shaker type potassium channel, GORK, regulates abscisic acid signaling in Arabidopsis. Plant Pathology Journal, 2019, 35 (6): 684- 691.
doi: 10.5423/PPJ.OA.07.2019.0199 |
|
Liu J , Jia C , Dong F , et al. Isolation of an abscisic acid senescence and ripening inducible gene from litchi and functional characterization under water stress. Planta, 2013, 237 (4): 1025- 1036.
doi: 10.1007/s00425-012-1820-x |
|
Livak K J , Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262 |
|
Mouline K , Very A A , Gaymard F , et al. Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Gene & Development, 2002, 16 (3): 339- 350. | |
Murashige T , Skoog F . A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 1962, 15 (3): 473- 497.
doi: 10.1111/j.1399-3054.1962.tb08052.x |
|
Obata T , Kitamoto H K , Nakamura A , et al. Rice Shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiology, 2007, 144 (4): 1978- 1985.
doi: 10.1104/pp.107.101154 |
|
Philippar K , Buchsenschutz K , Abshagen M , et al. The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. Journal of Biological Chemistry, 2003, 278 (19): 16973- 16981.
doi: 10.1074/jbc.M212720200 |
|
Pilot G , Lacombe B , Gaymard F , et al. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. Journal of Biological Chemistry, 2001, 276 (5): 3215- 3221.
doi: 10.1074/jbc.M007303200 |
|
Sentenac H , Bonneaud N , Minet M , et al. Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256 (5027): 663- 665. | |
Su Y H , North H , Grignon C , et al. Regulation by external K+ in a maize inward Shaker channel targets transport activity in the high concentration range. The Plant Cell, 2005, 17 (5): 1532- 1548.
doi: 10.1105/tpc.104.030551 |
|
Véry A A , Gaymard F , Bosseux C , et al. Expression of a cloned plant K+ channel in Xenopus oocytes: analysis of macroscopic currents. The Plant Journal, 1995, 7 (2): 321- 332.
doi: 10.1046/j.1365-313X.1995.7020321.x |
|
Véry A A , Nieves-Cordones M , Daly M , et al. Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species?. Journal of Plant Physiology, 2014, 171 (9): 748- 769.
doi: 10.1016/j.jplph.2014.01.011 |
|
Véry A A , Sentenac H . Molecular mechanisms and regulation of K+ transport in higher plants. Annual Review of Plant Biology, 2003, 54 (1): 575- 603.
doi: 10.1146/annurev.arplant.54.031902.134831 |
|
Wang Y , Wu W H . Regulation of potassium transport and signaling in plants. Current Opinion in Plant Biology, 2017, 39, 123- 128.
doi: 10.1016/j.pbi.2017.06.006 |
|
Ward J M , Mäser P , Schroeder J I . Plant ion channels: gene families, physiology, and functional genomics analyses. Annual Review of Physiology, 2009, 71, 59- 82.
doi: 10.1146/annurev.physiol.010908.163204 |
|
Yang Y , Tang R J , Jiang C M , et al. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnology Journal, 2015, 13 (7): 962- 973.
doi: 10.1111/pbi.12335 |
|
Zimmermann S , Talke I , Ehrhardt T , et al. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells. Plant Physiology, 1998, 116 (3): 879- 890.
doi: 10.1104/pp.116.3.879 |
[1] | 朱成磊, 杨克彬, 徐秀荣, 马霜, 李晓佩, 高志民. 毛竹NIP基因的分子特征及应答胁迫的表达模式[J]. 林业科学, 2021, 57(1): 64-76. |
[2] | 孙伟博,宫新栋,周燕,李红岩. 转玉米PEPC和PPDK基因杨树苗期的光合生理特性[J]. 林业科学, 2020, 56(7): 33-43. |
[3] | 刘中原,刘峥,徐颖,刘珊珊,田志兰,解庆军,高彩球. 白桦HSFA4转录因子的克隆及耐盐功能分析[J]. 林业科学, 2020, 56(5): 69-79. |
[4] | 梁璧,张佳琦,任飞,胡恒康,徐川梅,胡渊渊,黄有军,娄和强,张启香. 山核桃贝壳杉烯氧化酶基因CcKO的克隆和表达分析[J]. 林业科学, 2020, 56(10): 70-82. |
[5] | 张超, 王进茂, 赵洁, 庞丁玮, 张德健, 杨敏生. 转多基因欧美杨Bt基因表达特征[J]. 林业科学, 2019, 55(9): 61-70. |
[6] | 刘道凤, 王霞, 代银, 杨建峰, 马婧, 李名扬, 眭顺照. 蜡梅转录因子CpTAF10基因的克隆及功能分析[J]. 林业科学, 2019, 55(6): 176-183. |
[7] | 卢惠君, 李子义, 梁瀚予, 岳远志, 周天畅, 杨玉璋, 王玉成, 及晓宇. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3): 54-63. |
[8] | 范伟健, 相伟芳, 王静, 白鹏华, 潘丽娜, 杨艺新, 朱耿平, 李敏. 农药与紫外胁迫对白蛾周氏啮小蜂小分子热激蛋白sHSP12.2基因表达的影响[J]. 林业科学, 2019, 55(2): 128-136. |
[9] | 张扬, 杜琳, 唐贤丰, 刘唤唤, 周功克, 柴国华. 杨树BAG基因的鉴定及表达模式分析[J]. 林业科学, 2019, 55(1): 138-145. |
[10] | 魏明科, 俞金健, 黄晓龙, 刘琼瑶, 黄华宏, 林二培, 童再康. 杉木NAC转录因子基因ClNAC1的克隆、表达及单核苷酸多态性分析[J]. 林业科学, 2018, 54(9): 49-59. |
[11] | 任健, 殷雨晴, 张慧慧, 陈典, 王可新, 王勇. 马占相思纤维素合酶基因AmCesA1的克隆及分析[J]. 林业科学, 2018, 54(8): 79-87. |
[12] | 王娟, 陈辉. 华山松大小蠹冷休克结合蛋白的鉴定与表达[J]. 林业科学, 2018, 54(4): 58-66. |
[13] | 张鹤华, 刘嘉欣, 罗朝兵, 张凌云. 青杄转录因子PwERF8及其启动子序列的克隆与分析[J]. 林业科学, 2018, 54(3): 48-60. |
[14] | 李建波, 贾会霞, 张进, 刘伯斌, 胡建军, 王丽娟, 卢孟柱. 毛白杨PtoWOX4a基因过表达对次生生长的影响[J]. 林业科学, 2018, 54(2): 52-59. |
[15] | 张芹, 徐宗大, 赵凯, 李晓伟, 张罗沙, 张启翔. 梅花花青素苷调控基因PmMYB1的分离及功能分析[J]. 林业科学, 2018, 54(10): 64-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||