林业科学 ›› 2021, Vol. 57 ›› Issue (1): 64-76.doi: 10.11707/j.1001-7488.20210107
朱成磊1,杨克彬1,徐秀荣1,马霜1,2,李晓佩1,高志民1,*
收稿日期:
2020-02-17
出版日期:
2021-01-01
发布日期:
2021-03-10
通讯作者:
高志民
基金资助:
Chenglei Zhu1,Kebin Yang1,Xiurong Xu1,Shuang Ma1,2,Xiaopei Li1,Zhimin Gao1,*
Received:
2020-02-17
Online:
2021-01-01
Published:
2021-03-10
Contact:
Zhimin Gao
摘要:
目的: 膜内在水通道蛋白(NIPs)是细胞膜上运输水分子和一些小分子物质的膜蛋白,在植物生长以及抵御逆境胁迫等方面发挥着重要作用。温度和水分是影响竹子生长发育的重要环境因子,研究温度和干旱胁迫条件下毛竹NIP家族成员的表达模式,以揭示其在毛竹应答胁迫中的功能。方法: 利用生物信息学软件对毛竹基因组中NIP家族成员基因及其启动子序列进行系统分析,基于转录组数据分析基因在毛竹不同组织中的表达模式,并用实时荧光定量PCR (qPCR)技术检测基因在温度和干旱胁迫条件下的表达特征,构建2个NIP基因的酵母表达载体,分析它们的表达对酵母抗干旱和盐胁迫能力的影响。结果: 在毛竹基因组中共获得14个编码完整NIP蛋白的基因(PeNIP1-1—PeNIP1-6、PeNIP2-1—PeNIP2-4和PeNIP3-1—PeNIP3-4),含有3~5个内含子;在PeNIPs启动子区域中含有多种与胁迫、激素相关的调控元件;PeNIPs编码蛋白的氨基酸长度为235~297 aa,相对分子量为24.03~31.84 kDa;亚细胞定位预测显示所有PeNIPs均定位于细胞质膜上。共线性分析表明,有12个PeNIPs与水稻8个NIP基因存在27对片段重复,它们的非同义对同义取代比(Ka/Ks)均小于1,表明毛竹PeNIPs经复制后主要经历了较强的纯化选择。系统进化分析表明,来自毛竹和其他5个物种的NIP蛋白可分为3类(Ⅰ、Ⅱ、Ⅲ),毛竹在各类中的成员依次为6、4和4个。PeNIPs共包含10个保守基序,其中基序1、2和4为PeNIPs所共有。转录组表达谱热图分析表明,PeNIPs在不同组织中的表达存在一定的差异,如Ⅰ类的PeNIP1-3、PeNIP1-4和PeNIP1-5在根中表达,而在笋中几乎不表达;Ⅱ类的4个PeNIP2s以及Ⅲ类的PeNIP3-1和PeNIP3-2在根和笋中表达量较高。qPCR结果显示,随着胁迫时间的延长,4℃处理下8个基因上调表达,2个基因下调表达;42℃处理下,2个基因上调表达,4个基因下调表达;而干旱胁迫下3个基因上调表达。表达PeNIP1-1和PeNIP2-2的酵母在添加山梨醇或NaCl培养基上的生长优于对照。结论: 从毛竹中共鉴定出14个NIP家族基因成员(PeNIPs),各基因的分子特征、表达模式均存在着一定差异,说明它们在毛竹生长发育的不同阶段和响应环境胁迫中可能发挥着不同的作用;在酵母表达的PeNIP1-1和PeNIP2-2能够一定程度上提高酵母的抗干旱和盐胁迫能力,说明它们在毛竹应对逆境胁迫中可能发挥着重要作用。
中图分类号:
朱成磊,杨克彬,徐秀荣,马霜,李晓佩,高志民. 毛竹NIP基因的分子特征及应答胁迫的表达模式[J]. 林业科学, 2021, 57(1): 64-76.
Chenglei Zhu,Kebin Yang,Xiurong Xu,Shuang Ma,Xiaopei Li,Zhimin Gao. Molecular Characteristics of NIP Genes in Phyllostachys edulis and Their Expression Patterns in Response to Stresses[J]. Scientia Silvae Sinicae, 2021, 57(1): 64-76.
表1
PCR引物①"
用途 Application | 引物名称 Primer name | 正向序列 Forward sequence(5′—3′) | 反向序列 Reverse sequence(5′—3′) |
基因克隆 Gene cloning | ORF-NIP1-1 | ATGTCAGGAGGAGGTGAGAACTC | TTAGGTCGAGTTCATCCTGTTCA |
ORF-NIP2-2 | ATGGCGTCCAACACCTCGAG | TCAGACGTTGTCGAACTCGTCG | |
载体构建 Vector construction | BENIP1-1 | cgggatccATGTCAGGAGGA | cggaattcTTAGGTCGAGTTCATC |
BENIP2-2 | cgggatccATGGCGTCCA | cggaattcTCAGACGTTGTCGAA | |
基因表达定量分析 Quantitative analysis of gene expression | PeNIP1-1 | AGCTCATGAGCAGAGAGCCATG | TTCTTGCTCTGGTTGATCGTCAC |
PeNIP1-2 | TGTGCTAATCGCAGGGCCTATC | CTTGTTGGTGAACCGGATGAGG | |
PeNIP1-3 | ATGGCAACGACATGATCTCCG | AGACCATGACCATGACGACGAG | |
PeNIP1-4 | GCAGCACGAGCAATCACCAC | TACCGGCCGTCCTCAGGTT | |
PeNIP1-5 | GGAATCAGCACCAGCAATCATC | AGCCGGCGAAGATGAGTAAGT | |
PeNIP1-6 | AGGAGGTGGTGTATGATCACCAGT | TTCACTGTGATGGCTCCCAAG | |
PeNIP2-1 | GATATCCATGACCTCTCCACGGT | CGTCACGAACACCAGCAAGAAC | |
PeNIP2-2 | TCCAACACCTCGAGGACCAAC | CCACCTCCGATATGACCTTCTTG | |
PeNIP2-3 | AACGAGAGGTCGCTCGCA | ACGAACACCAGCAAGAACGT | |
PeNIP2-4 | GGCGCGTGGGTCTACACTTACAT | TCGGCGGCGATATTGCACT | |
PeNIP3-1 | GTACGAGCGCAAGTCCATGCCG | GATGAACGTGCCCACGAACTCC | |
PeNIP3-2 | CCTCGTGGCCGGGCCGAC | CAGCGTCGGCGCGATCAGGT | |
PeNIP3-3 | GTGCTGTCCACCATCGTCAT | ACCCGGAGATGTGCACGAT | |
PeNIP3-4 | TCACCACGTTCGTCCTCCTCT | CTGCCACTGCTAACAACTCTTTCA | |
PeTIP41 | AAAATCATTGTAGGCCATTGTCG | ACTAAATTAAGCCAGCGGGAGTG |
表2
PeNIPs蛋白的理化性质和亚细胞定位预测"
蛋白名称 Protein name | 毛竹基因组数据库基因序列号 Bamboo GDB assembly number | 长度 Size(aa) | 分子量 Molecular weight/kDa | 跨膜结构(个) Transmembrane helices | 等电点 Isoelectric point | 亚细胞定位 Subcellular localization |
PeNIP1-1 | PH02Gene20677.t1 | 276 | 29.44 | 6 | 9.24 | 细胞质膜Plasma membrane |
PeNIP1-2 | PH02Gene31944.t1 | 276 | 29.39 | 6 | 9.05 | 细胞质膜Plasma membrane |
PeNIP1-3 | PH02Gene42050.t1 | 280 | 29.58 | 6 | 6.51 | 细胞质膜Plasma membrane |
PeNIP1-4 | PH02Gene42825.t1 | 284 | 29.91 | 6 | 8.65 | 细胞质膜Plasma membrane |
PeNIP1-5 | PH02Gene08234.t1 | 283 | 29.70 | 6 | 8.64 | 细胞质膜Plasma membrane |
PeNIP1-6 | PH02Gene21937.t1 | 280 | 30.19 | 6 | 8.99 | 细胞质膜Plasma membrane |
PeNIP2-1 | PH02Gene01047.t1 | 295 | 31.79 | 6 | 6.70 | 细胞质膜Plasma membrane |
PeNIP2-2 | PH02Gene10020.t1 | 295 | 31.69 | 6 | 7.69 | 细胞质膜Plasma membrane |
PeNIP2-3 | PH02Gene06447.t1 | 295 | 31.84 | 6 | 7.09 | 细胞质膜Plasma membrane |
PeNIP2-4 | PH02Gene43404.t1 | 297 | 31.79 | 6 | 7.10 | 细胞质膜Plasma membrane |
PeNIP3-1 | PH02Gene10399.t1 | 292 | 30.48 | 6 | 8.64 | 细胞质膜Plasma membrane |
PeNIP3-2 | PH02Gene21395.t2 | 295 | 30.68 | 6 | 9.08 | 细胞质膜Plasma membrane |
PeNIP3-3 | PH02Gene12579.t1 | 235 | 24.03 | 4 | 7.93 | 细胞质膜Plasma membrane |
PeNIP3-4 | PH02Gene12578.t1 | 286 | 29.43 | 6 | 7.96 | 细胞质膜Plasma membrane |
曹永慧, 周本智, 倪霞, 等. 模拟干旱下毛竹叶片水势的动态变化. 林业科学研究, 2018, 31 (4): 183- 191. | |
Cao Y H , Zhou B Z , Ni X , et al. The dynamic change of leaf water potential for moso bamboo under throughfall exclusion. Forest Research, 2018, 31 (4): 183- 191. | |
陈士怡, 徐洪基. 酵母遗传学. 北京: 科学出版社, 1989. | |
Chen S Y , Xu H J . Yeast genetics. Beijing: Science Press, 1989. | |
李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析. 世界竹藤通讯, 2019, 17 (6): 45- 48. | |
Li Y M , Feng P F . Bamboo resources in China based on the ninth national forest inventory data. World Bamboo and Rattan, 2019, 17 (6): 45- 48. | |
刘辉, 邓治, 杨洪, 等. 橡胶树HbMC2在酵母中的表达和抗逆性分析. 生物技术通报, 2018, 34 (9): 202- 208. | |
Liu H , Deng Z , Yang H , et al. Expression and stress tolerance analysis of HbMC2 gene from Hevea brasliensis in yeast. Biotechnology Bulletin, 2018, 34 (9): 202- 208. | |
应叶青, 魏建芬, 解楠楠, 等. 自然低温胁迫对毛竹生理生化特性的影响. 南京林业大学学报: 自然科学版, 2011, 35 (3): 133- 136.
doi: 10.3969/j.issn.1000-2006.2011.03.028 |
|
Ying Y Q , Wei J F , Xie N N , et al. Effects of natural low temperature stress on physiological and biochemical properties of Phyllostachys edulis. Journal of Nanjing Forestry University: Natural Science Edition, 2011, 35 (3): 133- 136.
doi: 10.3969/j.issn.1000-2006.2011.03.028 |
|
Anisimova M , Bielawski J P , Yang Z . Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Molecular Biology and Evolution, 2001, 18 (8): 1585- 1592.
doi: 10.1093/oxfordjournals.molbev.a003945 |
|
Azad A K , Sawa Y , Ishikawa T , et al. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis. Applied and Environmental Microbiology, 2009, 75 (9): 2792- 2797.
doi: 10.1128/AEM.02335-08 |
|
Bezerra-Neto J P , de Araújo F C , Ferreira-Neto J R C , et al. Plant aquaporins: diversity, evolution and biotechnological applications. Current Protein and Peptide Science, 2019, 20 (4): 368- 395.
doi: 10.2174/1389203720666181102095910 |
|
Chen C J , Chen H , He Y H , et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13 (8): 1194- 1202.
doi: 10.1016/j.molp.2020.06.009 |
|
Chiba Y , Mitani N , Yamaji N , et al. HvLsi1 is a silicon influx transporter in barley. The Plant Journal, 2009, 57 (5): 810- 818.
doi: 10.1111/j.1365-313X.2008.03728.x |
|
Choi W G , Roberts D M . Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. Journal of Biological Chemistry, 2007, 282 (33): 24209- 24218.
doi: 10.1074/jbc.M700982200 |
|
Creelman R A , Tierney M L , Mullet J E . Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89 (11): 4938- 4941.
doi: 10.1073/pnas.89.11.4938 |
|
Danielson J A , Johanson U . Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biology, 2008, 8, 45.
doi: 10.1186/1471-2229-8-45 |
|
de Groot B L , Grubmüller H . Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science, 2001, 294 (5550): 2353- 2357.
doi: 10.1126/science.1062459 |
|
Di Giorgio J A , Bienert G P , Ayub N D , et al. Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in Arabidopsis thaliana. The Plant Cell, 2016, 28 (5): 1053- 1077.
doi: 10.1105/tpc.15.00776 |
|
Fortin M G , Morrison N A , Verma D P . Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Research, 1987, 15 (2): 813- 824.
doi: 10.1093/nar/15.2.813 |
|
Gomes D , Agasse A , Thiébaud P , et al. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2009, 1788 (6): 1213- 1228.
doi: 10.1016/j.bbamem.2009.03.009 |
|
Gómez-Soto D , Galván S , Rosales E , et al. Insights into the role of phytohormones regulating pAtNIP5;1 activity and boron transport in Arabidopsis thaliana. Plant Science, 2019, 287, 110198.
doi: 10.1016/j.plantsci.2019.110198 |
|
Hachez C , Chaumont F . Aquaporins: a family of highly regulated multifunctional channels. Advances in Experimental Medicine and Biology, 2010, 679, 1- 17. | |
Hanaoka H , Uraguchi S , Takano J , et al. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. The Plant Journal, 2014, 78 (5): 890- 902.
doi: 10.1111/tpj.12511 |
|
Huang Z , Zhong X J , He J , et al. Genome-wide identification, characterization, and stress-responsive expression profiling of genes encoding LEA(Late Embryogenesis Abundant) proteins in moso bamboo(Phyllostachys edulis). PLoS ONE, 2016, 11 (11): e0165953.
doi: 10.1371/journal.pone.0165953 |
|
Husband B , Schemske D W . Cytotype distribution at a diploid-tetraploid contact zone in Chamerion(Epilobium) angustifolium(Onagraceae). American Journal of Botany, 1998, 85 (12): 1688- 1694.
doi: 10.2307/2446502 |
|
Isayenkov S V , Maathuis F J . The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Letters, 2008, 582 (11): 1625- 1628.
doi: 10.1016/j.febslet.2008.04.022 |
|
Johanson U , Karlsson M , Johansson I , et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 2001, 126 (4): 1358- 1369.
doi: 10.1104/pp.126.4.1358 |
|
Jones D T , Taylor W R , Thornton J M . The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 1992, 8 (3): 275- 282.
doi: 10.1093/bioinformatics/8.3.275 |
|
Kaldenhoff R , Fischer M . Functional aquaporin diversity in plants. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2006, 1758 (8): 1134- 1141.
doi: 10.1016/j.bbamem.2006.03.012 |
|
Kumar S , Stecher G , Tamura K . MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33 (7): 1870- 1874.
doi: 10.1093/molbev/msw054 |
|
Lescot M , Déhais P , Thijs G , et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30 (1): 325- 327.
doi: 10.1093/nar/30.1.325 |
|
Li L , Mu S H , Cheng Z C , et al. Characterization and expression analysis of the WRKY gene family in moso bamboo. Scientific Reports, 2017, 7 (1): 6675.
doi: 10.1038/s41598-017-06701-2 |
|
Livak K J , Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262 |
|
Lou Y F , Sun H Y , Li L C , et al. Characterization and primary functional analysis of a bamboo ZEP gene from Phyllostachys edulis. DNA Cell and Biology, 2017, 36 (9): 747- 758.
doi: 10.1089/dna.2017.3705 |
|
Majda M , Robert S . The role of auxin in cell wall expansion. International Journal Molecular Sciences, 2018, 19 (4): 951.
doi: 10.3390/ijms19040951 |
|
Matiz A , Cambuí C A , Richet N , et al. Involvement of aquaporins on nitrogen-acquisition strategies of juvenile and adult plants of an epiphytic tank-forming bromeliad. Planta, 2019, 250 (1): 319- 332.
doi: 10.1007/s00425-019-03174-7 |
|
Maurel C , Santoni V , Luu D T , et al. The cellular dynamics of plant aquaporin expression and functions. Current Opinion Plant Biology, 2009, 12 (6): 690- 698.
doi: 10.1016/j.pbi.2009.09.002 |
|
Molina-Hidalgo F J , Medina-Puche L , Gelis S , et al. Functional characterization of FaNIP1;1 gene, a ripening-related and receptacle-specific aquaporin in strawberry fruit. Plant Science, 2015, 238, 198- 211.
doi: 10.1016/j.plantsci.2015.06.013 |
|
Paterson A H , Wendel J F , Gundlach H , et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492 (7429): 423- 427.
doi: 10.1038/nature11798 |
|
Peng Z H , Lu Y , Li L B , et al. The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla). Nature Genetics, 2013, 45 (4): 456- 461.
doi: 10.1038/ng.2569 |
|
Reddy P S , Rao T S R B , Sharma K K , et al. Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor(L. ). Plant Gene, 2015, 1 (5): 18- 28. | |
Roth C , Liberles D A . A systematic search for positive selection in higher plants(Embryophytes). BMC Plant Biology, 2006, 6, 12.
doi: 10.1186/1471-2229-6-12 |
|
Schnurbusch T , Hayes J , Hrmova M , et al. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiology, 2010, 153 (4): 1706- 1715.
doi: 10.1104/pp.110.158832 |
|
Sun H Y , Li L C , Lou Y F , et al. Cloning and preliminary functional analysis of PeUGE gene from moso bamboo(Phyllostachys edulis). DNA Cell and Biology, 2016, 35 (11): 706- 714.
doi: 10.1089/dna.2016.3389 |
|
Sun H Y , Li L C , Lou Y F , et al. The bamboo aquaporin gene PeTIP4;1-1 confers drought and salinity tolerance in transgenic Arabidopsis. Plant Cell Reports, 2017, 36 (4): 597- 609.
doi: 10.1007/s00299-017-2106-3 |
|
Villarreal N M , Marina M , Nardi C F , et al. Novel insights of ethylene role in strawberry cell wall metabolism. Plant Science, 2016, 252, 1- 11.
doi: 10.1016/j.plantsci.2016.06.018 |
|
Wang L L , Zhao H S , Chen D L , et al. Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. Plant Cell Reports, 2016, 35 (6): 1371- 1383.
doi: 10.1007/s00299-016-1970-6 |
|
Wang Y , Li R , Li D , et al. NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (19): 5047- 5052.
doi: 10.1073/pnas.1618557114 |
|
Wang Y P , Tang H B , DeBarry J D , et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40 (7): e49.
doi: 10.1093/nar/gkr1293 |
|
Wolf S , Mravec J , Greiner S , et al. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Current Biology, 2012, 22 (18): 1732- 1737.
doi: 10.1016/j.cub.2012.07.036 |
|
Wu A M , Hao P B , Wei H L , et al. Genome-wide identification and characterization of glycosyltransferase family 47 in cotton. Frontiers in Genetics, 2019, 10, 824.
doi: 10.3389/fgene.2019.00824 |
|
Wu H L , Lv H , Li L , et al. Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in moso bamboo(Phyllostachys edulis). PLoS ONE, 2015, 10 (5): e0126657.
doi: 10.1371/journal.pone.0126657 |
|
Yamaji N , Huang C F , Nagao S , et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. The Plant Cell, 2009, 21 (10): 3339- 3349.
doi: 10.1105/tpc.109.070771 |
|
Zhang M , Liu Y , Shi H , et al. Evolutionary and expression analyses of soybean basic leucine zipper transcription factor family. BMC Genomics, 2018, 19 (1): 159.
doi: 10.1186/s12864-018-4511-6 |
|
Zhao H S , Gao Z M , Wang L , et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo(Phyllostachys edulis). GigaScience, 2018, 7 (10): giy115.
doi: 10.1093/gigascience/giy115 |
|
Zhao X Q , Mitani N , Yamaji N , et al. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiology, 2010, 153 (4): 1871- 1877.
doi: 10.1104/pp.110.157867 |
|
Zhu Y X , Yang L , Liu N , et al. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber. BMC Plant Biology, 2019, 19 (1): 345.
doi: 10.1186/s12870-019-1953-1 |
[1] | 饶瑾, 王慧, Nayebare Kakwara Prosper, 王婕, 姜俊, 杨秀树, 刘庭菘, 孙芳利. 漆酶催化碘化竹材的防腐性能[J]. 林业科学, 2021, 57(2): 160-167. |
[2] | 王力敏,陈亚辉,杨庆山,曲日涛,姜姜,张金池,张洪霞,宋志忠. 山新杨钾离子通道基因PdbSKOR的克隆与功能分析[J]. 林业科学, 2021, 57(1): 53-63. |
[3] | 徐鹏飞,杨艳红,张毓婷,陈云,汤定钦. 毛竹四倍体诱导及初步鉴定[J]. 林业科学, 2020, 56(8): 55-62. |
[4] | 孙伟博,宫新栋,周燕,李红岩. 转玉米PEPC和PPDK基因杨树苗期的光合生理特性[J]. 林业科学, 2020, 56(7): 33-43. |
[5] | 朱成磊,李彩丽,李晓佩,史晶晶,高志民. 毛竹微管蛋白的分子特征及PeTUA3的功能[J]. 林业科学, 2020, 56(7): 44-54. |
[6] | 刘中原,刘峥,徐颖,刘珊珊,田志兰,解庆军,高彩球. 白桦HSFA4转录因子的克隆及耐盐功能分析[J]. 林业科学, 2020, 56(5): 69-79. |
[7] | 沈钱勇,汤孟平. 浙江省毛竹竹秆材积模型[J]. 林业科学, 2020, 56(5): 89-96. |
[8] | 饶瑾,杨胜祥,吴华平,杨秀树,孙芳利. 漆酶催化碘处理竹材防霉性能[J]. 林业科学, 2020, 56(2): 148-155. |
[9] | 熊雨露,周宇峰,李平衡,童亮,周国模,施拥军,杜华强. 毛竹林竹鞭生长特征和空间结构的探地雷达无损探测[J]. 林业科学, 2020, 56(12): 19-27. |
[10] | 申景昕,刘广路,范少辉,冯云,陈本学,吴昌明,刘希珍. 毛竹向撂荒地扩展过程中的土壤养分特征[J]. 林业科学, 2020, 56(10): 26-33. |
[11] | 梁璧,张佳琦,任飞,胡恒康,徐川梅,胡渊渊,黄有军,娄和强,张启香. 山核桃贝壳杉烯氧化酶基因CcKO的克隆和表达分析[J]. 林业科学, 2020, 56(10): 70-82. |
[12] | 陶晨悦, 邵珊璐, 史文辉, 林琳, 汤祎磊, 应叶青. 氮沉降对干旱胁迫下毛竹实生苗生物量和保护酶活性的影响[J]. 林业科学, 2019, 55(9): 31-40. |
[13] | 张超, 王进茂, 赵洁, 庞丁玮, 张德健, 杨敏生. 转多基因欧美杨Bt基因表达特征[J]. 林业科学, 2019, 55(9): 61-70. |
[14] | 刘道凤, 王霞, 代银, 杨建峰, 马婧, 李名扬, 眭顺照. 蜡梅转录因子CpTAF10基因的克隆及功能分析[J]. 林业科学, 2019, 55(6): 176-183. |
[15] | 卢惠君, 李子义, 梁瀚予, 岳远志, 周天畅, 杨玉璋, 王玉成, 及晓宇. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3): 54-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||