王关林, 方宏筠. 2016. 植物基因工程实验技术指南. 2版. 北京:科学出版社, 273-274, 277-278. (Wang G L, Fang H J. 2016. Laboratory guide for plant genetic engineering. 2nd ed. Beijing:Science Press, 273-274, 277-278.[in Chinese]) 王玉成, 薄海侠, 杨传平. 2003. 胡杨、柽柳总RNA提取方法的建立. 东北林业大学学报, (5):99-100. (Wang Y C, Bo H Y, Yang C P. 2003. A method for rapid isolation of total RNA from Tamarix and Populus euphratica Oliv. Journal of Northeast Forestry University, (5):99-100.[in Chinese]) 杨勇, 田新权, 刘会利, 等. 2017. 陆地棉NAC转录因子基因GhNAC6的克隆、表达和耐盐性分析. 棉花学报, 29(2):138-146. (Yang Y, Tian X Q, Liu H L, et al. 2017. Cloning, expression and salt-tolerance analysis of the NAC transcription factor gene GhNAC6 in Upland Cotton. Cotton Science, 29(2):138-146.[in Chinese]) 尹林克. 1995. 中亚荒漠生态系统中的关键种-柽柳(Tamarix spp). 干旱区研究,12(3):43-47. (Yin L K. 1995. Tamarix spp.-The key species of desert ecosystem. Arid Zone Research, 12(3):43-47.[in Chinese]) 袁义杭, 张鹤华, 游韩莉, 等. 2018. 青杄PwNAC42基因的克隆及表达模式分析. 生物技术通报, 34(4):1-6. (Yuan Y H, Zhang H H, You H L, et al. 2018. Cloning and expression analysis of PwNAC42 in Picea wilsonii. Biotechnology Bulletin, 34(4):1-6.[in Chinese]) Chen Q, Niu F, Yan J, et al. 2017. Oilseed rape NAC56 transcription factor modulates reactive oxygen species accumulation and hypersensitive response-like cell death. Physiol Plant, 160(2):209-221. Duval M, Hsieh T F, Kim S Y, et al. 2002. Molecular characterization of AtNAMa:member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology, 50(2):237-248. Fang Y, Liao K, Du H, et al. 2015. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot, 66(21):6803-6817. Hao Y J, Wei W, Song Q X, et al. 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 68(2):302-313. Hu H H, Dai M Q, Yao J L, et al. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 103(35):12987-12992. Huang D, Wang S, Zhang B, et al. 2015. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell, 27(6):1681-1696. Ji X Y, Zheng L, Liu Y J, et al. 2014. A transient transformation system for the functional characterization of genes involved in stress response. Plant Mol Biol Rep, 32(3):732-739. Kjaersgaard T, Jensen M K, Christiansen M W, et al. 2011. Senescence-associated barley NAC (NAM, ATAF1, 2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. Journal of Biological Chemistry, 286(41):35418-35429. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4):402-408. Mao X, Zhang H, Qian X, et al. 2012. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 63(8):2933-2946. Nakashima K, Takasaki H, Mizoi J, et al. 2012. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta-Gene Regulatory Mechanisma, 1819(2):97-103. Niu F, Wang C, Yan J, et al. 2016. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcription alactivator modulating reactive oxygen species accumulation and cell death. Plant Mol Biol, 92(1/2):89-104. Ooka H, Satoh K, Doi K, et al. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 10(6):239-247. Shen H, Yin Y, Chen F, et al. 2009. A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenergy Research, 2(4):217-232. Tang Y M, Liu M Y, Gao S Q, et al. 2012. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant, 114(3):210-224. Tran L S, Nakashima K, Sakuma Y, et al. 2004. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 16(9):2481-2498. Tran L S, Nishiyama R, Yamaguchi-Shinozaki K, et al. 2010. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants biotechnological approach. GM Crops, 1(1):32-39. Wang L, Li Z, Lu M, et al. 2017b. ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci, 8:635. Wang L L, Hu Z L, Zhu M K, et al. 2017a. The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tissue and Organ Culture, 129(1):161-174. Wang Z, Dane F. 2013. NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiologiae Plantarum, 35(5):1397-1408. Xia N, Zhang G, Liu X Y, et al. 2010a. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 37(8):3703-3712. Xia N, Zhang G, Sun Y F, et al. 2010b. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 74(5/6):394-402. Yang S D, Seo P J, Yoon H K, et al. 2011. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell, 23(6):2155-2168. Zhong R, Lee C, Ye Z H. 2010. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant, 3(6):1087-1103. |