Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 26-36.doi: 10.11707/j.1001-7488.LYKX20230583
• Research papers • Previous Articles Next Articles
Weiyue Wang1,Yanfang Wan2,Dongmei Wang1,*(),Pengtao Yu2,Yanhui Wang2,Yushi Bai2
Received:
2023-12-01
Online:
2025-01-25
Published:
2025-02-09
Contact:
Dongmei Wang
E-mail:dmwang@126.com
CLC Number:
Weiyue Wang,Yanfang Wan,Dongmei Wang,Pengtao Yu,Yanhui Wang,Yushi Bai. Slope Aspect Differences of Both the Radial Growth of Dominant Trees of Larix principis-rupprechtii and Main Environmental Influence Factors in Liupan Mountain[J]. Scientia Silvae Sinicae, 2025, 61(1): 26-36.
Table 1
Basic characteristics of sample plots"
样地 编号 Plot No. | 坡向 Aspect | 海拔 Altitude/ m | 坡度 Slope/ (°) | 土壤厚度 Soil thickness/ m | 土壤密度 Soil bulk density/ (g·cm?3) | 田间持 水量Field capacity (%) | 总孔隙度 Total porosity (%) | 林龄 Stand age/ a | 林冠郁 闭度 Canopy density | 林分密度 Stand density/ hm?2 | 平均胸径 Mean DBH/cm | 平均树高 Mean tree height/m |
A1 | 北偏西64° 64° west from north | 33 | 1.3 | 1.13 | 38.83 | 55.99 | 24 | 0.81 | 11.0 | 8.8 | ||
A2 | 北偏西50° 50° west from north | 24 | 1.4 | 1.13 | 37.24 | 54.35 | 24 | 0.73 | 10.9 | 8.7 | ||
A3 | 北偏西31° 31° west from north | 35 | 1.4 | 1.02 | 49.26 | 59.42 | 25 | 0.87 | 12.6 | 9.4 | ||
A4 | 正北0° 0° north | 26 | >2.0 | 1.05 | 44.61 | 57.01 | 26 | 0.75 | 13.5 | 10.4 | ||
A5 | 北偏东24° 24° east from north | 32 | >2.0 | 1.06 | 39.47 | 57.31 | 23 | 0.63 | 12.2 | 9.4 | ||
A6 | 北偏东30° 30° east from north | 32 | 1.4 | 0.97 | 45.03 | 59.49 | 26 | 0.73 | 12.7 | 10.6 | ||
A7 | 北偏东35° 35° east from north | 22 | 1.8 | 1.02 | 47.38 | 56.28 | 24 | 0.83 | 12.9 | 10.6 | ||
A8 | 北偏东72° 72° east from north | 24 | 1.2 | 1.06 | 44.60 | 57.13 | 13 | 0.72 | 8.4 | 7.4 | ||
A9 | 北偏东77° 77° east from north | 25 | 1.0 | 1.11 | 41.71 | 55.42 | 14 | 0.58 | 850 | 9.1 | 6.7 | |
A10 | 东偏南4° 4° south from east | 25 | 0.9 | 1.09 | 42.56 | 54.65 | 11 | 0.38 | 575 | 7.5 | 5.7 | |
A11 | 东偏南11° 11° south from east | 26 | 0.8 | 1.03 | 45.16 | 57.75 | 9 | 0.21 | 475 | 6.6 | 4.3 |
Table 2
Basic characteristics of sample trees"
坡向分组 Slope aspect groups | 样地编号 Sample plot number | 坡向 Aspect | 样地内优势木株数 Number of dominant trees in the sample plot | 胸径 DBH/cm | 树高 Tree height/m | 冠幅直径 Crown width diameter/m |
半阴坡 Semi shady slope (NW) | A1 | 北偏西64° 64° west from north | 8 | 16.1 ± 2.7 | 11.5 ± 2.0 | 4.3 ± 0.8 |
A2 | 北偏西50° 50° west from north | 13 | 15.4 ± 1.7 | 11.1 ± 1.5 | 4.3 ± 0.8 | |
阴坡 Shady slope (NW) | A3 | 北偏西31° 31° west from north | 7 | 16.9 ± 1.7 | 9.8 ± 2.3 | 4.1 ± 0.7 |
A4 | 正北0° 0° north | 10 | 17.3 ± 3.1 | 12.4 ± 1.8 | 4.5 ± 0.9 | |
阴坡 Shady slope (NE) | A5 | 北偏东24° 24° east from north | 8 | 17.8 ± 1.8 | 11.9 ± 1.3 | 3.9 ± 0.9 |
A6 | 北偏东30° 30° east from north | 9 | 17.1 ± 2.4 | 12.2 ± 1.8 | 4.1 ± 0.7 | |
A7 | 北偏东35° 35° east from north | 11 | 17.3 ± 2.1 | 13.3 ± 0.3 | 4.1 ± 1.0 | |
半阴坡 Semi shady slope (NE) | A8 | 北偏东72° 72° east from north | 21 | 12.1 ± 2.6 | 9.8 ± 0.9 | 3.4 ± 1.0 |
A9 | 北偏东77° 77° east from north | 14 | 11.8 ± 1.7 | 7.7 ± 1.1 | 3.4 ± 0.7 | |
半阳坡 Semi shady slope (SE) | A10 | 东偏南4° 4° south from east | 6 | 7.6 ± 1.3 | 5.6 ± 0.8 | 3.1 ± 0.6 |
A11 | 东偏南11° 11° south from east | 9 | 7.2 ± 0.7 | 5.1 ± 0.4 | 2.6 ± 0.5 |
Fig.6
The structural equation model between BAI and environmental factors in different periods The green arrow represents a positive correlation, the red arrow represents a negative correlation, the solid arrow represents a significant correlation, and the dashed arrow represents an insignificant correlation."
杜阿朋, 王彦辉, 管 伟, 等. 六盘山叠叠沟小流域的土壤石砾含量坡面分布特征. 水土保持学报, 2009, 23 (5): 76- 80.
doi: 10.3321/j.issn:1009-2242.2009.05.016 |
|
Du A P, Wang Y H, Guan W, et al. slope distribution characteristics of soil gravel content in Diediegou watershed, Liupan Mountains, China. Journal of Soil and Water Conservation, 2009, 23 (5): 76- 80.
doi: 10.3321/j.issn:1009-2242.2009.05.016 |
|
高佳妮, 杨 保, 秦 春. 树木年内径向生长对干旱事件的响应——以贺兰山油松为例. 应用生态学报, 2021, 32 (10): 3505- 3511. | |
Gao J N, Yang B, Qin C. Response of annual radial growth of trees to drought events—a case study of Pinus tabulaeformis in Helan Mountains. Chinese Journal of Applied Ecology, 2021, 32 (10): 3505- 3511. | |
郭滨德, 张远东, 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异. 应用生态学报, 2016, 27 (2): 354- 364. | |
Guo B D, Zhang Y D, Wang X C. Responses of Picea asperata and Abies fabri tree rings to rapid warming in different slope aspect in western Sichuan Plateau. Journal of Applied Ecology, 2016, 27 (2): 354- 364. | |
郭明辉. 森林培育措施对红松人工林径向生长性质的影响. 林业科学, 2003, 39 (5): 100- 104.
doi: 10.3321/j.issn:1001-7488.2003.05.015 |
|
Guo M H. Effects of forest cultivation measures on radial growth properties of Sequoia sempervirens plantation. Scientia Silvae Sinica, 2003, 39 (5): 100- 104.
doi: 10.3321/j.issn:1001-7488.2003.05.015 |
|
国家林业局. 2000. 森林土壤水分-物理性质的测定(LY/T 1215—1999). 北京: 中国标准出版社, 22−24. | |
State Forest Administration. 2000. Determination of forest soil moisture and physical properties(LY/T 1215—1999). Beijing: Standards Press of China, 22−24. [in Chinese] | |
洪 流. 2020. 优势度对华北落叶松树干液流和林分蒸腾估计的影响. 北京: 北京林业大学. | |
Hong L. 2020. Effect of dominance degree on estimation of SAP flow and stand transpiration of Larix principis-rupprechtii. Beijing: Beijing Forestry University. [in Chinese] | |
贾 存, 郭明明, 王 倩, 等. 华北落叶松人工林和天然林径向生长对气候变化的响应. 中南林业科技大学学报, 2022, 42 (1): 120- 128. | |
Jia C, Guo M M, Wang Q, et al. Response of radial growth of Larix principis-rupprechtii and natural forest to climate change. Journal of Central South University of Forestry and Technology, 2022, 42 (1): 120- 128. | |
靳仔鑫, 于澎涛, 万艳芳, 等. 六盘山叠叠沟小流域典型植被的产流产沙特征. 陆地生态系统与保护学报, 2022, 2 (2): 20- 28.
doi: 10.12356/j.2096-8884.2022-0006 |
|
Jin Z X, Yu P T, Wan Y F, et al. Characteristics of sediment yield and loss of typical vegetation in Diediegou watershed, Liupan Mountain. Journal of Terrestrial Ecosystems and Conservation, 2022, 2 (2): 20- 28.
doi: 10.12356/j.2096-8884.2022-0006 |
|
李广起, 白 帆, 桑卫国. 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应. 植物生态学报, 2011, 35 (5): 500- 511. | |
Li G Q, Bai F, Sang W G. Different responses of radial growth of Pinus koraiensis and Picea jezoensis at the upper limit of distribution to climate warming in Changbai Mountains. Journal of Plant Ecology, 2011, 35 (5): 500- 511. | |
李金亮, 姜健发. 高黎贡山秃杉人工林林分密度与生长关系研究. 林业调查规划, 2017, 42 (6): 122- 126.
doi: 10.3969/j.issn.1671-3168.2017.06.026 |
|
Li J L, Jiang J F. Study on the relationship between stand density and growth of Baldness forest in Gaoligong Mountain. Forestry Investigation and Planning, 2017, 42 (6): 122- 126.
doi: 10.3969/j.issn.1671-3168.2017.06.026 |
|
马 菁. 2020. 六盘山华北落叶松多时间尺度树干径向生长的环境响应. 北京: 北京林业大学. | |
Ma J. 2020. Environmental response of multi-time scale trunk radial growth of Larix principis-rupprechtii in Liupan Mountains. Beijing: Beijing Forestry University. [in Chinese] | |
乔晶晶, 王 童, 潘 磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应. 应用生态学报, 2019, 30 (7): 2231- 2240. | |
Qiao J J, Wang T, Pan L, et al. Response of wheel width of Larix principis-rupprechtii at different elevations and slope aspect to climate change. Journal of Applied Ecology, 2019, 30 (7): 2231- 2240. | |
秦颢萍, 张 军, 刘泽彬, 等. 环境因子对华北落叶松树干径向变化的影响. 森林与环境学报, 2022, 42 (3): 297- 305. | |
Qin H P, Zhang J, Liu Z B, et al. Effects of environmental factors on radial changes of trunk of Larix principis-rupprechtii. Journal of Forestry and Environment, 2022, 42 (3): 297- 305. | |
石建周, 刘贤德, 田 青, 等. 祁连山中部青海云杉年内径向生长季节变化及其对环境因子的响应. 水土保持学报, 2022, 36 (2): 261- 267. | |
Shi J Z, Liu X D, Tian Q, et al. Radial seasonal changes of Picea crassifolia and its response to environmental factors in the central Qilian Mountains. Journal of Soil and Water Conservation, 2022, 36 (2): 261- 267. | |
万艳芳. 2023. 六盘山华北落叶松人工林蒸腾和生长过程对干旱的响应. 北京: 中国林业科学研究院. | |
Wan Y F. 2023. Response of transpiration and growth process of Larix principis-rupprechtii plantation to drought in Liupanshan Mountain. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王 彬, 于澎涛, 于艺鹏, 等. 祁连山不同年龄青海云杉径向生长对气候变化的响应. 林业科学, 2021, 57 (3): 1- 8. | |
Wang B, Yu P T, Yu Y P, et al. Response of radial growth of Picea crassifolia at different ages to climate change in Qilian Mountains. Scientia Silvae Sinica, 2021, 57 (3): 1- 8. | |
王 林, 冯锦霞, 王双霞, 等. 干旱和坡向互作对栓皮栎和侧柏生长的影响. 生态学报, 2013, 33 (8): 2425- 2433.
doi: 10.5846/stxb201209051255 |
|
Wang L, Feng J X, Wang S X, et al. Effects of drought and slope aspect interaction on the growth of Quercus variabilis and Platycladus orientalis. Acta Ecologica Sinica, 2013, 33 (8): 2425- 2433.
doi: 10.5846/stxb201209051255 |
|
王树力, 周健平. 基于结构方程模型的林分生长与影响因子耦合关系分析. 北京林业大学学报, 2014, 36 (5): 7- 12. | |
Wang S L, Zhou J P. Analysis of coupling relationship between stand growth and impact factors based on structural equation model. Journal of Beijing Forestry University, 2014, 36 (5): 7- 12. | |
王晓晨, 马雪晴, 和骅芸, 等. 1961—2020年中国北方向日葵种植区干湿变化特征及其成因分析. 干旱气象, 2022, 40 (6): 1033- 1041.
doi: 10.11755/j.issn.1006-7639(2022)-06-1033 |
|
Wang X C, Ma X Q, He H Y, et al. Characteristics and causes of dry and wet changes in sunflower growing areas in northern China during 1961–2020. Journal of Arid Meteorology, 2022, 40 (6): 1033- 1041.
doi: 10.11755/j.issn.1006-7639(2022)-06-1033 |
|
王小雪, 王 恒, 张俊飞, 等. 塞罕坝林区华北落叶松径向生长对气候变化的响应. 林业与生态科学, 2022, 37 (2): 192- 197. | |
Wang X X, Wang H, Zhang J F, et al. Response of radial growth of Larix principis-rupprechtii to climate change in Saihanba forest. Forestry and Ecological Sciences, 2022, 37 (2): 192- 197. | |
徐小勤, 于澎涛, 王彦辉, 等. 六盘山华北落叶松林的结构随林龄变化及其水文影响. 林业科学研究, 2023, 36 (1): 109- 116.
doi: 10.12403/j.1001-1498.20220218 |
|
Xu X Q, Yu P T, Wang Y H, et al. Changes in structure and hydrological effects of Larix principis-rupprechtii forest with age in Liupan Mountains. Forest Research, 2023, 36 (1): 109- 116.
doi: 10.12403/j.1001-1498.20220218 |
|
薛盼盼, 缪 宁, 王 东, 等. 川西亚高山林线岷江冷杉和红杉对气象变化的响应. 生态学报, 2022, 42 (23): 9701- 9711. | |
Xue P P, Miao N, Wang D, et al. Response of Minjiang Abies fabri and Sequoia sempervirens to meteorological changes on the subalpine mountain line in western Sichuan. Acta Ecologica Sinica, 2022, 42 (23): 9701- 9711. | |
薛文鹏, 赵 忠, 李 鹏, 等. 王东沟不同坡向刺槐细根分布特征研究. 西北农林科技大学学报(自然科学版), 2003, 31 (6): 27- 32. | |
Xue W P, Zhao Z, Li P, et al. Study on distribution characteristics of fine roots of Robinia pseudoacacia in different slope aspect in Wangdonggou. Journal of Northwest A & F University (Natural Science Edition), 2003, 31 (6): 27- 32. | |
张冬燕, 王冬至, 张志东, 等. 不同龄组华北落叶松人工林径向生长模型构建. 山东农业大学学报(自然科学版), 2017, 48 (3): 449- 455. | |
Zhang D Y, Wang D Z, Zhang Z D, et al. Construction of radial growth model of Larix principis-rupprechtii of different age groups. Journal of Shandong Agricultural University (Natural Science Edition), 2017, 48 (3): 449- 455. | |
张先亮, 何兴元, 陈振举, 等. 大兴安岭山地樟子松径向生长对气候变暖的响应——以满归地区为例. 应用生态学报, 2011, 22 (12): 3101- 3108. | |
Zhang X L, He X Y, Chen Z J, et al. Response of radial growth of Pinus sylvestris to climate warming in the Greater Khingan Mountains: a case study of Mangui region. Journal of Applied Ecology, 2011, 22 (12): 3101- 3108. | |
赵守栋, 江 源, 焦 亮, 等. ARSTAN程序和R语言dplR扩展包进行树轮年表分析的比较研究. 生态学报, 2015, 35 (22): 7494- 7502. | |
Zhao S J, Jiang Y, Jiao L, et al. A comparative study on tree-ring chronology analysis between ARSTAN program and R language dplR extension package. Acta Ecologica Sinica, 2015, 35 (22): 7494- 7502. | |
朱海峰, 王丽丽, 邵雪梅, 等. 雪岭云杉树轮宽度对气候变化的响应. 地理学报, 2004, 59 (6): 863- 870.
doi: 10.3321/j.issn:0375-5444.2004.06.008 |
|
Zhu H F, Wang L L, Shao X M, et al. Response of ring width of Picea schrenkiana to climate change. Acta Geographica Sinica, 2004, 59 (6): 863- 870.
doi: 10.3321/j.issn:0375-5444.2004.06.008 |
|
Adams H D, Barron-Gafford G A, Minor R L, et al. Temperature response surfaces for mortality risk of tree species with future drought. Environmental Research Letters, 2017, 12 (11): 115014.
doi: 10.1088/1748-9326/aa93be |
|
Andreu L, Gutierrez E, Macias M, et al. Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology, 2007, 13 (4): 804- 815.
doi: 10.1111/j.1365-2486.2007.01322.x |
|
Bollen K A. 1989. Structural equations with latent variables. New York: John Wiley & Sons. | |
D'Amato A W, Bradford J B, Fraver S, et al. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications: a publication of the Ecological Society of America, 2013, 23 (8): 1735- 1742.
doi: 10.1890/13-0677.1 |
|
Elliott G P, Kipfmueller K F. Multi-scale influences of slope aspect and spatial pattern on ecotonal dynamics at upper treeline in the southern Rocky Mountains, U. S. A. Arctic Antarctic and Alpine Research, 2010, 42 (1): 45- 56.
doi: 10.1657/1938-4246-42.1.45 |
|
Fekedulegn D, Hicks R R, Colbert J J. Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. Forest Ecology and Management, 2003, 177 (1/3): 409- 425. | |
Gao L L, Gao X H, Yang D, et al. Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus. Agricultural and Forest Meteorology, 2018, 260/261, 9- 16.
doi: 10.1016/j.agrformet.2018.05.025 |
|
Grace J B, Anderson T M, Olff H, et al. On the specification of structural equation models for ecological systems. Ecological Monographs, 2010, 80 (1): 67- 87.
doi: 10.1890/09-0464.1 |
|
Hennenberg K J, Bruelheide H. Ecological investigations on the northern distribution range of Hippocrepis comosa L. in Germany. Plant Ecology, 2003, 166 (2): 167- 188.
doi: 10.1023/A:1023280109225 |
|
Hof, A R, Girona M M, Fortin, M-J, et al. Editorial: using landscape simulation models to help balance conflicting goals in changing forests. Frontiers in Ecology and Evolution, 2021, 9, 795736.
doi: 10.3389/fevo.2021.795736 |
|
Holmes R L. Computer-assisted quality control in treering dating and measurement. Tree-Ring Bulletin, 1983, 43, 69- 78. | |
Huang J P, Li Y, Fu C, et al. Dryland climate change: recent progress and challenges. Reviews of Geophysics, 2017, 55 (3): 719- 778.
doi: 10.1002/2016RG000550 |
|
Kirchhefer A J. 2000. The influence of slope aspect on tree ring growth of Pinus sylvestris L. in northern Norway and its implications for climate reconstruction. Dendrochronologia, 18: 27-40. | |
Lal, R. 2004, Carbon sequestration in dryland ecosystems. Environmental Management, 33(4): 528–544. | |
Leonelli G, Pelfini M, Battipaglia G. et al. Site-aspect influence on climate sensitivity over time of a high-altitude Pinus cembra tree-ring network. Climatic Change, 2009, 96, 185- 201.
doi: 10.1007/s10584-009-9574-6 |
|
Liang E Y, Shao X M, Eckstein D, et al. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 2006, 236 (2/3): 268- 277. | |
Liu Z B, Wang Y H, Tian A, et al. Intra-annual variation of stem radius of Larix principis-rupprechtii and its response to environmental factors in Liupan Mountains of northwest China. Forests, 2017, 8 (10): 382.
doi: 10.3390/f8100382 |
|
Ma J, Guo J B, Wang Y H, et al. Variations in stem radii of Larix principis-rupprechtii to environmental factors at two slope locations in the Liupan Mountains, northwest China. Journal of Forestry Research, 2020, 32 (2): 513- 527. | |
Peng C H, Ma Z H, Lei X D, et al. A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 2011, 1 (9): 467- 471.
doi: 10.1038/nclimate1293 |
|
Pigott C D. Experimental studies on the influence of climate on the geographical distribution of plants. Weather, 1975, 30, 82- 90.
doi: 10.1002/j.1477-8696.1975.tb05283.x |
|
Richards A E, Forrester D I, Bauhus J, et al. The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiology, 2010, 30 (9): 1192- 1208.
doi: 10.1093/treephys/tpq035 |
|
Schnabel F, Purrucker S, Schmitt L, et al. Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Global Change Biology, 2022, 28 (5): 1870- 1883.
doi: 10.1111/gcb.16028 |
|
Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 2010, 23 (7): 1696- 1718.
doi: 10.1175/2009JCLI2909.1 |
|
Wan Y F, Yu P T, Li X Q, et al. Seasonal pattern of stem diameter growth of Qinghai spruce in the Qilian Mountains, northwestern China. Forests, 2020, 11 (5): 494.
doi: 10.3390/f11050494 |
|
Wang B, Yu P T, Zhang L, et al. Differential trends of Qinghai spruce growth with elevation in northwestern China during the recent warming hiatus. Forests, 2019, 10 (9): 712.
doi: 10.3390/f10090712 |
[1] | Xiaodong Zhou,Shunli Chang,Guanzheng Wang,Xuejiao Sun,Yutao Zhang,Xiang Li. Altitude Differentiation of Radial Growth of Picea schrenkiana in Response to Climate Change in Tianshan Mountains [J]. Scientia Silvae Sinicae, 2024, 60(3): 45-56. |
[2] | Wanting Ge,Ying Liu,Zhijia Zhao,Shen Zhang,Jie Li,Guijuan Yang,Guanzheng Qu,Junhui Wang,Wenjun Ma. Prediction of Potential Distribution for Huangxin (Catalpa) in China under Different Climate Scenarios [J]. Scientia Silvae Sinicae, 2024, 60(11): 63-74. |
[3] | Zhang Xin, Zhang Qiuliang, Sun Shoujia, Wang Bing. CO2 Concentration and the δ13C Dynamics in Larix gmelinii Ecosystem in Response to Environmental Factors [J]. Scientia Silvae Sinicae, 2023, 59(9): 55-65. |
[4] | Kai Zhang,Yanli Sun,Jichao Wei,Yaqian Fan,Xiaoxue Han,Lin Li,Xiaoshuai Wei,Xinhao Li,Peng Liu,Tianshan Zha. Control of Environmental Factors on the Sap Flow at Daily and Seasonal Scales in Ulmus macrocarpa in Beijing, China [J]. Scientia Silvae Sinicae, 2023, 59(7): 24-34. |
[5] | Haotong Ma,Guangze Jin,Zhili Liu. Changes of Basal Area Growth of Pinus koraiensis with Tree Ages and Impact Factors in Xiaoxing’ anling Mountains, Northeast China [J]. Scientia Silvae Sinicae, 2023, 59(7): 96-105. |
[6] | Ziyou Zhang,Yanhui Wang,Ao Tian,Zebin Liu,Jianbin Guo,Pengtao Yu,Xiao Wang,Yipeng Yu. Spatiotemporal Characteristics and Environmental Response of Vegetation Carbon Densities of Larix principis-rupprechtii Plantations in the Liupan Mountains of Ningxia, China [J]. Scientia Silvae Sinicae, 2023, 59(4): 32-45. |
[7] | Shuning Zhang,Junxing Chen,Dun Ao,Mei Hong,Yaqian Zhang,Fuhai Bao,Lin Wang,Tana Wuyun,Yu’e Bai,Wenquan Bao. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change [J]. Scientia Silvae Sinicae, 2023, 59(12): 25-36. |
[8] | Lixuan Wang,Guang Yang,Jiaqi Gao,Xin Zheng,Zhaoguo Li,Yuetai Weng,Xueying Di,Hongzhou Yu. Changes in the Flammability of Post-Fire Aboveground Litter of Larix gmelinii [J]. Scientia Silvae Sinicae, 2022, 58(6): 110-121. |
[9] | Pengyu Zhao,Xue Bai,Pingmei Yan,Xiaodong Zhao,Xiaoying Wu,Baofeng Chai. Responses of Soil Bacterial Community Structure and Phenotype to Soil Heterogeneity in Larix principis-rupprechtii Forest [J]. Scientia Silvae Sinicae, 2021, 57(7): 101-110. |
[10] | Rui Bai,Ning Li,Shaojun Liu,Xiaomin Chen,Haiping Zou,Run Lü. Risk Analysis of White Root Disease on Rubber Trees in China under the Background of Future Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 37-45. |
[11] | Ping She,Bing Cao,Yanhui Wang,Zhijia Yu,Zheng Wang,Jie Ma,Baoguang Jia. Effect of Forest Floor Treatments on Density of the First-Year Seedlings in Larix principis-rupprechtii Plantation [J]. Scientia Silvae Sinicae, 2021, 57(3): 18-28. |
[12] | Wenbo Li,Zhengang Lü,Xuanrui Huang,Zhidong Zhang. Predicting Spatial Distribution of Site Index for Larix principis-rupprechtii Plantations in the Northern Hebei Province [J]. Scientia Silvae Sinicae, 2021, 57(3): 79-89. |
[13] | Xue Dong, Yonghua Li, Zhiming Xin, Ruibing Duan, bin Yao, Yanfeng Bao, Zhengguo Zhang, Yuan Liu. Patterns of Altitudinal Distribution of Species Diversity of Desert Gobi Shrub Communities in West Hexi Corridor of China [J]. Scientia Silvae Sinicae, 2021, 57(2): 168-178. |
[14] | Fanqiang Ma,Quanshui Guo,Aili Qin,Zunji Jian,Jiyong Huang,Zhongbing Wang,Quan Yang,Shiqiang Zhang. Survival and Growth of Reintroduced Thuja sutchuenensis Seedlings in Relation to Environmental Factors [J]. Scientia Silvae Sinicae, 2021, 57(11): 1-12. |
[15] | Moshun Chen,Zexin Jin,Shisheng Ke,Zilin Chen,Deyue Pan. Community Characteristics and Their Relations with Environmental Variables of Critically Endangered Species Carpinus tientaiensis [J]. Scientia Silvae Sinicae, 2020, 56(9): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||