Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (3): 45-56.doi: 10.11707/j.1001-7488.LYKX20220631
• Research papers • Previous Articles Next Articles
Xiaodong Zhou1,2,Shunli Chang1,2,*(),Guanzheng Wang1,2,Xuejiao Sun2,3,Yutao Zhang2,3,Xiang Li2,3
Received:
2022-09-15
Online:
2024-03-25
Published:
2024-04-08
Contact:
Shunli Chang
E-mail:ecocsl@163.com
CLC Number:
Xiaodong Zhou,Shunli Chang,Guanzheng Wang,Xuejiao Sun,Yutao Zhang,Xiang Li. Altitude Differentiation of Radial Growth of Picea schrenkiana in Response to Climate Change in Tianshan Mountains[J]. Scientia Silvae Sinicae, 2024, 60(3): 45-56.
Table 1
Basic information about sampling sites"
项目Item | BFG1 | BFG2 | BFG3 |
经度Longitude (E) | 87°27′53″ | 87°28′11″ | 87°28′32″ |
纬度Latitude (N) | 43°26′12″ | 43°25′51″ | 43°28′26″ |
平均海拔Mean altitude /m | 1 800 | 2 300 | 2 700 |
坡度Slope gradient/ (°) | 30 | 31 | 27 |
坡向Slope aspect | 北North | 北North | 北North |
样本量(芯/树) Sample quantity (cores/ tree) | 55/28 | 61/31 | 66/34 |
Table 2
Statistics of tree-ring width standard chronology of Picea schrenkiana at different altitudes"
年表特征Statistic characteristics | BFG1 | BFG2 | BFG3 |
时间段 Time span | 1929—2021 | 1861—2021 | 1813—2021 |
平均敏感度 Mean sensitivity | 0.280 | 0.132 | 0.130 |
标准差 Standard deviation | 0.192 | 0.327 | 0.293 |
一阶自相关系数 First order autocorrelation coefficient | 0.272 | 0.943 | 0.533 |
序列间相关系数 Mean correlation of all series | 0.484 | 0.312 | 0.208 |
树内相关系数 Mean correlation in a tree | 0.681 | 0.685 | 0.588 |
树间相关系数 Mean correlation between trees | 0.480 | 0.305 | 0.202 |
信噪比 Signal to noise ratio | 36.589 | 21.763 | 16.311 |
样本总体解释量 Expressing population signal | 0.973 | 0.956 | 0.942 |
子样本信号>0.85起始年 The first year of subsample signal strength > 0.85 | 1940 | 1912 | 1919 |
Fig.9
Boxplot of resistance,recovery, and resilience to the drought at different altitudes Different uppercase letters indicate significant differences between the same years at different altitudes (P<0.05), and different lowercase letters indicate significant differences between the same years at the same altitudes (P<0.05)."
阿米娜木·艾力, 常顺利, 张毓涛, 等. 天山云杉森林土壤有机碳沿海拔的分布规律及其影响因素. 生态学报, 2014, 34 (7): 1626- 1634. | |
Aminem Eli, Chang S L, Zhang Y T, et al. Altitudinal distribution rule of Picea schrenkiana forest’s soil organic carbon and its influencing factors. Acta Ecologica Sinica, 2014, 34 (7): 1626- 1634. | |
蔡家庆, 薛 峰, 袁 帅, 等. 德令哈地区柏树山不同生境气候对祁连圆柏径向生长的影响. 生态学报, 2022, 42 (16): 6758- 6767. | |
Cai J Q, Xue F, Yuan S, et al. Impacts of climate on the radial growth of Sabina przewalskii in different habitats in Baishu Mountain, Delingha region, China. Acta Ecologica Sinica, 2022, 42 (16): 6758- 6767. | |
陈 峰, 袁玉江, 魏文寿, 等. 树轮记录的伊犁地区近354年帕尔默干旱指数变化. 高原气象, 2011, 30 (2): 355- 362. | |
Chen F, Yuan Y J, Wei W S, et al. Variations of long-term palmer drought index in recent 354 years in Yili based on tree-ring record. Plateau Meteorology, 2011, 30 (2): 355- 362. | |
董满宇, 江 源, 王明昌, 等. 中国高山林线树木径向生长研究进展. 北京师范大学学报(自然科学版), 2017, 53 (6): 698- 704. | |
Dong M Y, Jiang Y, Wang M C, et al. Radial growth of trees in alpine timberline. Journal of Beijing Normal University (Natural Science), 2017, 53 (6): 698- 704. | |
李晓琴, 张凌楠, 曾小敏, 等. 黄土高原中部针叶树与灌木径向生长对气候的响应差异. 生态学报, 2020, 40 (16): 5685- 5697. | |
Li X Q, Zhang L N, Zeng X M, et al. Different response of conifer and shrubs radial growth to climate in the middle Loess Plateau. Acta Ecologica Sinica, 2020, 40 (16): 5685- 5697. | |
刘德才. 1991年新疆自然灾害综述与评价. 干旱区研究, 1992, 9 (3): 71- 76. | |
Liu D C. Summary and evaluation of natural disasters in Xinjiang in 1991. Arid Zone Research, 1992, 9 (3): 71- 76. | |
彭钟通, 郭明明, 张远东, 等. 升温突变对川西道孚林线川西云杉和鳞皮冷杉生长的影响. 生态学报, 2021, 41 (20): 8202- 8211. | |
Peng Z T, Guo M M, Zhang Y D, et al. Effects of abrupt warming on Picea likiangensis var. balfouriana and Abies squamata growth at tree line in Dafu, Sichuan, China. Acta Ecologica Sinica, 2021, 41 (20): 8202- 8211. | |
秦 莉, 尚华明, 喻树龙, 等. 全球变化背景下天山西部雪岭云杉径向生长和水分利用效率对气候要素的响应. 沙漠与绿洲气象, 2021, 15 (3): 1- 9. | |
Qin L, Shang H M, Yu S L, et al. Response of tree-ring growth and intrinsic water-use efficiency to climate elements in the western Tianshan Mountains under global change. Desert and Oasis Meteorology, 2021, 15 (3): 1- 9. | |
秦 莉, 袁玉江, 喻树龙, 等. 赛里木湖流域雪岭云杉(Picea schrenkiana)树木径向生长对气候变化的响应. 中国沙漠, 2015, 35 (1): 113- 119. | |
Qin L, Yuan Y J, Yu S L, et al. Response of tree-ring growth of Picea schrenkianato climate change in the sayram lake basin, Xinjiang, China. Journal of Desert Research, 2015, 35 (1): 113- 119. | |
申佳艳, 李帅锋, 黄小波, 等. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程. 林业科学, 2020, 56 (6): 1- 11. | |
Shen J Y, Li S F, Huang X B, et al. Ecological resilience and growth degradation of Pinus yunnanensis at different altitudes in Jinsha River Basin. Scientia Silvae Sinicae, 2020, 56 (6): 1- 11. | |
石仁娜·加汗, 张同文, 喻树龙, 等. 天山不同海拔雪岭云杉径向生长对气候变化的响应. 干旱区研究, 2021, 38 (2): 327- 338. | |
Shirenna Jiahan, Zhang T W, Yu S L, et al. Picea schrenkiana response to climate change at different altitudes in Tianshan Mountains. Arid Zone Research, 2021, 38 (2): 327- 338. | |
孙雪娇, 常顺利, 张毓涛, 等. 天山森林植物功能性状与碳库沿海拔梯度的变化. 生态学报, 2018, 38 (14): 4994- 5005. | |
Sun X J, Chang S L, Zhang Y T, et al. The variations in plant functional traits and forest carbon content with altitudinal gradients in the Tianshan Mountains. Acta Ecologica Sinica, 2018, 38 (14): 4994- 5005. | |
王 婷, 于瑞德, 杨美琳, 等. 天山中部山区不同胸径天山云杉对气候的响应. 应用与环境生物学报, 2016, 22 (4): 579- 585. | |
Wang T, Yu R D, Yang M L, et al. Diameter-dependent growth responses of Picea schrenkiana to climate in the middle brae of Tianshan Mountain. Chinese Journal of Applied and Environmental Biology, 2016, 22 (4): 579- 585. | |
王遵娅, 丁一汇, 何金海, 等. 近50年来中国气候变化特征的再分析. 气象学报, 2004, 62 (2): 228- 236. | |
Wang Z Y, Ding Y H, He J H, et al. An updating analysis of the climate change in China in recent 50 years. Acta Meteorologica Sinica, 2004, 62 (2): 228- 236. | |
吴秀兰, 段春锋, 玛依拉. 基于 MCI 的新疆近 60 a 干旱时空特征分析. 干旱区研究, 2022, 39 (1): 75- 83. | |
Wu X L, Duan C F, Mayila, et al. Analysis of the temporal-spatial variation characteristics of drought in the Xinjiang based on the meteorological drought comprehensive index. Arid Zone Research, 2022, 39 (1): 75- 83. | |
吴燕良, 甘 淼, 于瑞德, 等. 基于树轮生理模型的雪岭云杉径向生长的模拟研究. 干旱区地理, 2020, 43 (1): 64- 71. | |
Wu Y L, Gan M, Yu R D, et al. Process-based modeling radial growth of Picea schrenkiana in the eastern Tianshan Mountains. Arid Land Geography, 2020, 43 (1): 64- 71. | |
杨绕琼, 范泽鑫, 李宗善, 等. 滇西北玉龙雪山不同海拔云南松(Pinus yunnanensis)径向生长对气候因子的响应. 生态学报, 2018, 38 (24): 8983- 8991. | |
Yang R Q, Fan Z X, Li Z S, et al. Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain, Northwest Yunnan, China. Acta Ecologica Sinica, 2018, 38 (24): 8983- 8991. | |
姚俊强, 毛炜峄, 陈 静, 等. 新疆气候“湿干转折” 的信号和影响探讨. 地理学报, 2021, 76 (1): 57- 72. | |
Yao J Q, Mao W Y, Chen J, et al. Signal and impact of wet-to-dry shift over Xinjiang, China. Acta Geographica Sinica, 2021, 76 (1): 57- 72. | |
喻树龙, 袁玉江, 秦 莉, 等. 天山北坡中部不同海拔高度雪岭云杉树轮宽度气候响应对比分析. 沙漠与绿洲气象, 2016, 10 (3): 30- 38.
doi: 10.3969/j.issn.1002-0799.2016.03.005 |
|
Yu S L, Yuan Y J, Qin L, et al. Tree-ring-width growth responses of Picea schrenkiana to climate change for different elevations in the central Tianshan Mountains. Desert and Oasis Meteorology, 2016, 10 (3): 30- 38.
doi: 10.3969/j.issn.1002-0799.2016.03.005 |
|
张瑞波. 2017. 基于树轮的中亚西天山干湿变化研究. 兰州: 兰州大学. | |
Zhang R B. 2017. Teee-ring-based droughts variability in western Tianshan Mountains, central Asia. Lanzhou: Lanzhou University. [in Chinese] | |
张艳静, 于瑞德, 郑宏伟, 等. 天山东西部雪岭云杉径向生长对气候变暖的响应差异. 生态学杂志, 2017, 36 (8): 2149- 2159. | |
Zhang Y J, Yu R D, Zheng H W, et al. Difference in response of radial growth of Picea schrenkiana to climate warming in the eastern and western Tianshan Mountains. Chinese Journal of Ecology, 2017, 36 (8): 2149- 2159. | |
《中国气象灾害大典》编委会. 2006. 中国气象灾害大典新疆卷. 北京: 气象出版社, 17−35. | |
Editorial Board of China Meteorological Disaster Canon. 2006. Xinjiang Volume of China Meteorological Disaster. Beijing: Meteorological Press, 17−35. [in Chinese] | |
周 鹏, 黄建国, 梁寒雪, 等. 不同海拔温度和降水对新疆阿尔泰山西伯利亚落叶松径向生长的影响. 热带亚热带植物学报, 2019, 27 (6): 623- 632. | |
Zhou P, Huang J G, Liang H X, et al. Effect of temperature and precipitation on radial growth of Larix sibirica along altitudinal gradient on Altay Mountains, Xinjiang, China. Journal of Tropical and Subtropical Botany, 2019, 27 (6): 623- 632. | |
周子建, 江 源, 董满宇, 等. 长白山北坡不同海拔红松径向生长-气候因子关系对气温突变的响应. 生态学报, 2018, 38 (13): 4668- 4676. | |
Zhou Z J, Jiang Y, Dong M Y, et al. Response of the relationship between radial growth and climatic factors to abrupt change of temperature along an altitudinal gradient on the northern slope of Changbai Mountain, Northeast China. Acta Ecologica Sinica, 2018, 38 (13): 4668- 4676. | |
Bi Y F, Xu J C, Gebrekirstos A, et al. Assessing drought variability since 1650 AD from tree-rings on the Jade Dragon Snow Mountain, southwest China. International Journal of Climatology, 2015, 35 (14): 4057- 4065.
doi: 10.1002/joc.4264 |
|
Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320 (5882): 1444- 1449.
doi: 10.1126/science.1155121 |
|
Buckley B M, Cook E R, Peterson M J, et al. A changing temperature response with elevation for Lagarostrobos franklinii in Tasmania, Australia. Climatic Change, 1997, 36, 477- 498.
doi: 10.1023/A:1005322332230 |
|
Campelo F, Vieira J, Nabais C. 2013. Tree-ring growth and intra-annual density fluctuations of Pinus pinaster responses to climate: does size matter? Trees, 27(3): 763-772. | |
Cook E. 1985. A time series analysis approach to tree-ring standardization. Tucson: University of Arizona Press. | |
Dai A G. Increasing drought under global warming in observations and models. Nature Climate Change, 2013, 3 (1): 52- 58.
doi: 10.1038/nclimate1633 |
|
Fritts H. 1976. Tree rings and climate. London: Academic Press. | |
Gao L L, Gou X H, Deng Y, et al. Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of Northwest China. Trees, 2017, 31 (2): 393- 404.
doi: 10.1007/s00468-015-1294-0 |
|
Gazol A, Camarero J J, Anderegg W R L, et al. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 2017, 26 (2): 166- 176.
doi: 10.1111/geb.12526 |
|
Gazol A, Camarero J J, Vicente-Serrano S M, et al. Forest resilience to drought varies across biomes. Global Change Biology, 2018, 24 (5): 2143- 2158.
doi: 10.1111/gcb.14082 |
|
Holmes R L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 1983, 43, 69- 75. | |
Jiang P, Liu H Y, Wu X C, et al. Tree-ring-based SPEI reconstruction in central Tianshan Mountains of China since A. D. 1820 and links to westerly circulation. International Journal of Climatology, 2017, 37 (6): 2863- 2872.
doi: 10.1002/joc.4884 |
|
IPCC. 2021. Climate change 2021: the physical science basis. Cambridge: Cambridge University Press . | |
Jiao L, Chen K, Liu X P, et al. Comparison of the response stability of Siberian larch to climate change in the Altai and Tianshan. Ecological Indicators, 2021, 128, 107823.
doi: 10.1016/j.ecolind.2021.107823 |
|
Jiao L, Jiang Y, Zhang W T, et al. Divergent responses to climate factors in the radial growth of Larix sibirica in the eastern Tianshan Mountains, Northwest China. Trees, 2015, 29 (6): 1673- 1686.
doi: 10.1007/s00468-015-1248-6 |
|
Jiao L, Jiang Y, Wang M C, et al. Age-effect radial growth responses of Picea schrenkiana to climate change in the eastern Tianshan Mountains, Northwest China. Forests, 2017, 8 (9): 294.
doi: 10.3390/f8090294 |
|
Levine N M, Zhang K, Longo M, et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (3): 793- 797. | |
Liang E Y, Wang Y F, Xu Y, et al. Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees, 2010, 24 (2): 363- 373.
doi: 10.1007/s00468-009-0406-0 |
|
Littell J S, Peterson D L, Tjoelker M. Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region. Ecological Monographs, 2008, 78 (3): 349- 368.
doi: 10.1890/07-0712.1 |
|
Lloret F, Keeling E G, Sala A N. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011, 120 (12): 1909- 1920.
doi: 10.1111/j.1600-0706.2011.19372.x |
|
Palombo C, Battipaglia G, Cherubini P, et al. Warming-related growth responses at the southern limit distribution of mountain pine (Pinus mugo Turra subsp. mugo). Journal of Vegetation Science, 2014, 25 (2): 571- 583.
doi: 10.1111/jvs.12101 |
|
Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biology, 2013, 15 (3): 483- 495.
doi: 10.1111/j.1438-8677.2012.00670.x |
|
Qi Z H, Liu H Y, Wu X C, et al. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biology, 2015, 21 (2): 816- 826.
doi: 10.1111/gcb.12703 |
|
Rahman M, Islam M, Bräuning A. Species-specific growth resilience to drought in a mixed semi-deciduous tropical moist forest in South Asia. Forest Ecology and Management, 2019, 433, 487- 496.
doi: 10.1016/j.foreco.2018.11.034 |
|
Sánchez-Salguero R, Camarero J J, Gutiérrez E, et al. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Global Change Biology, 2017, 23 (7): 2705- 2719.
doi: 10.1111/gcb.13541 |
|
Schwalm C R, Anderegg W R L, Michalak A M, et al. Global patterns of drought recovery. Nature, 2017, 548, 202- 205.
doi: 10.1038/nature23021 |
|
Seddon A W R, Macias-Fauria M, Long P R, et al. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 2016, 531, 229- 232.
doi: 10.1038/nature16986 |
|
Shen M G, Piao S L, Jeong S J, et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (30): 9299- 9304. | |
Song L N, Li M C, Zhu J J, et al. Comparisons of radial growth and tree-ring cellulose δ13C for Pinus sylvestris var. mongolica in natural and plantation forests on sandy lands. Journal of Forest Research, 2017, 22 (3): 160- 168.
doi: 10.1080/13416979.2017.1288775 |
|
Stokes M A, Smiley T L . 1996. An introduction to tree-ring dating. Arizona: University of Arizona Press. | |
Svobodová K, Langbehn T, Björklund J, et al. Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.) Karst. ) forests of the Calimani Mountains, Romania. Trees, 2019, 33 (5): 1345- 1359.
doi: 10.1007/s00468-019-01862-1 |
|
Thompson I, MacKey B, McNulty S, et al. 2009. Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Canada: Secretariat of the Convention on Biological Diversity, Montreal. | |
Wells N, Goddard S, Hayes M J. A self-calibrating palmer drought severity index. Journal of Climate, 2004, 17 (12): 2335- 2351.
doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2 |
|
Zang C, Hartl-Meier C, Dittmar C, et al. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biology, 2014, 20 (12): 3767- 3779.
doi: 10.1111/gcb.12637 |
|
Zhang Y, Bergeron Y, Zhao X H, et al. Stand history is more important than climate in controlling red maple (Acer rubrum L. ) growth at its northern distribution limit in western Quebec, Canada. Journal of Plant Ecology, 2015, 8 (4): 368- 379.
doi: 10.1093/jpe/rtu029 |
[1] | Yonglin Zheng,Yunqi Wang,Xiaoxiao Xu,Yujie Wang,Yaoming Li. The Acid Rain Response of Radial Growth of Pinus massoniana and Machilus nanmu in Jinyun Mountains of Chongqing [J]. Scientia Silvae Sinicae, 2024, 60(1): 58-67. |
[2] | Haotong Ma,Guangze Jin,Zhili Liu. Changes of Basal Area Growth of Pinus koraiensis with Tree Ages and Impact Factors in Xiaoxing’ anling Mountains, Northeast China [J]. Scientia Silvae Sinicae, 2023, 59(7): 96-105. |
[3] | Jiayan Shen,Shuaifeng Li,Xiaobo Huang,Shaowu Wang,Jianrong Su. Ecological Resilience and Growth Degradation of Pinus yunnanensis at Different Altitudes in Jinsha River Basin [J]. Scientia Silvae Sinicae, 2020, 56(6): 1-11. |
[4] | Jian Yu,Jiajia Chen,Guang Zhou,Guohua Liu,Yongping Wang,Junqing Li,Qijing Liu. Response of Radial Growth of Abies forrestii and Picea likiangensis to Climate Factors in the Central Hengduan Mountains, Southwest China [J]. Scientia Silvae Sinicae, 2020, 56(12): 28-38. |
[5] | Zhao Zhijiang, Guo Wenxia, Kang Dongwei, Cui Li, Zhao Lianjun, Li Junqing. Response of Radial Growth of Abies faxoniana and Picea purpurea to Climatic Factors in Subalpine of Western Sichuan [J]. Scientia Silvae Sinicae, 2019, 55(7): 1-16. |
[6] | Bai Xue, Fan Zexin. Response of Tree Ring Width to Climate Change of Tetracentron sinensis in Humid Evergreen Broad-Leaved Forest in the Middle Ailao Mountains [J]. Scientia Silvae Sinicae, 2018, 54(3): 161-167. |
[7] | Liang Ying, Li Jimei, Zhao Fengjun, Zhang Yutao, Kong Tingting, Nurgul·Mahan. Surface Fuel Loads of Tianshan Spruce Forests in the Central Tianshan Mountains and The Impact Factors [J]. Scientia Silvae Sinicae, 2017, 53(12): 153-160. |
[8] | Shang Zhiyuan, Wang Jian, Zhao Xingyun, Zhang Maoheng, Cui Mingxing, Chen Zhenju. Orientation Difference of Tree Ring δ13C Response to Climatic Factors for Pinus sylvestris var. mongolica [J]. Scientia Silvae Sinicae, 2013, 49(6): 1-9. |
[9] | Huang Rongfeng;Zhang Guosheng;Bao Fucheng;Wang Linhe;Liu Haidong. Dynamic Analysis on Tree Ring Growth of Sabina vulgaris Grown in Mu Us Sandland [J]. Scientia Silvae Sinicae, 2005, 41(2): 117-122. |
[10] | Gong Hede;Wang Kaiyun;Yang Wanqin;Wang Qian;Zhang Yuanbin. Throughfall and Stemflow in a Primary Spruce Forest in the Subalpine of Western Sichuan [J]. Scientia Silvae Sinicae, 2005, 41(1): 198-201. |
[11] | Guo Minghui. THE EFFECT OF SILVICULTURAL MEASURES ON RADIAL GROWTH PROPERTIES OF PINUS KORAIENSIS PLANTATIONS [J]. Scientia Silvae Sinicae, 2003, 39(5): 100-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||