Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (11): 37-47.doi: 10.11707/j.1001-7488.LYKX20240154
Previous Articles Next Articles
Fang Zhou1,2(),Keyi Jiang3,Lanhua Ye4,Qinghua Shen4,Ran Tong1,Nianfu Zhu1,Yongzhao Miao1,Tonggui Wu1,*
Received:
2024-03-08
Online:
2024-11-25
Published:
2024-11-30
Contact:
Tonggui Wu
E-mail:z_fang412@126.com
CLC Number:
Fang Zhou,Keyi Jiang,Lanhua Ye,Qinghua Shen,Ran Tong,Nianfu Zhu,Yongzhao Miao,Tonggui Wu. Soil Phosphorus Availability and Its Influencing Factors of the Plantations in Baishanzu National Park[J]. Scientia Silvae Sinicae, 2024, 60(11): 37-47.
Table 1
Basic conditions of the sampling plots for four stand types"
林分类型 Stand type | 坡度 Slope/ (o) | 郁闭度 Canopy density | 平均树高 Mean tree height/ m | 平均胸径 Mean DBH/ cm | 林分密度 Stand density/ hm?2 |
杉木纯林 Chinese fir pure forest | 28 | 0.70 | 10.5 | 11.7 | 1 550 |
马尾松纯林 Masson pine pure forest | 33 | 0.75 | 13.8 | 17.2 | 1 675 |
杉木马尾松混交林 Chinese fir-masson pine mixed forests | 30 | 0.80 | 10.9 / 12.3 | 12.5 / 14.2 | 1 875 |
杉木毛竹混交林 Chinese fir-moso bamboo mixed forests | 25 | 0.83 | 9.8 / 8.5 | 10.4 / 8.3 | 2 525 |
Table 2
Soil basic properties of 0−40 cm soil layer in four stand types (n=9)"
林分类型 Stand type | 土层 Soil layer/cm | pH | 有机碳含量 Organic carbon content/(g·kg?1) | 全氮含量 Total nitrogen content/(g·kg?1) | 碳氮比 Organic carbon/ total nitrogen | 碳磷比 Organic carbon/ total phosphorus | 氮磷比 Total nitrogen/ total phosphorus | 水解性氮含量 Hydrolyzable nitrogen content/ (mg·kg?1) |
杉木纯林 Chinese fir pure forest | 0~10 | 4.54±0.13 | 19.53±5.52 | 1.19±0.23 | 16.19±1.96 | 101.74±24.74AB | 6.24±0.95B | 82.43±4.05B |
10~20 | 4.75±0.19 | 15.60±3.83 | 0.83±0.20B | 18.79±1.73 | 81.58±16.82 | 4.36±0.92B | 56.73±19.82B | |
20~40 | 4.70±0.12 | 17.34±2.66AB | 0.79±0.04C | 21.93±3.92AB | 110.23±23.53AB | 5.04±0.76 | 49.80±14.50B | |
均值 Mean | 4.67±0.03 | 17.45±1.16 | 0.90±0.11C | 19.40±1.30 | 99.87±1.82AB | 5.17±0.45B | 59.69±12.58B | |
马尾松纯林 Masson pine pure forest | 0~10 | 4.64±0.09 | 24.86±7.40 | 1.53±0.29a | 16.08±2.86 | 117.52±10.83ABab | 7.40±0.75AB | 113.43±14.90ABa |
10~20 | 4.70±0.13 | 16.47±9.91 | 1.20±0.13Aab | 13.25±7.14 | 78.93±35.99b | 6.29±0.91AB | 83.37±7.81Bab | |
20~40 | 4.74±0.07 | 25.52±7.78A | 1.00±0.10Bb | 25.45±7.58A | 142.28±13.42Aa | 5.81±1.13 | 60.77±12.91Bb | |
均值 Mean | 4.70±0.08 | 23.10±8.18 | 1.18±0.12B | 19.16±5.11 | 119.12±17.55A | 6.37±0.88AB | 79.58±8.14B | |
杉木马尾松 混交林 Chinese fir-masson pine mixed forests | 0~10 | 4.61±0.05 | 26.10±4.06a | 1.49±0.11a | 17.50±2.14 | 151.57±21.82Aa | 8.66±0.64Aa | 114.33±9.07ABa |
10~20 | 4.71±0.10 | 20.24±2.42ab | 1.14±0.11ABb | 17.68±0.63 | 130.75±15.81ab | 7.39±0.83Aab | 81.73±5.08Bb | |
20~40 | 4.67±0.03 | 13.36±1.80Bb | 0.73±0.04Cc | 18.19±1.64AB | 106.12±4.34ABb | 5.87±0.64b | 53.00±7.25Bc | |
均值 Mean | 4.66±0.04 | 18.27±1.69 | 1.02±0.04BC | 17.82±1.42 | 126.43±13.24A | 7.11±0.77A | 75.52±6.52B | |
杉木毛竹 混交林 Chinese fir- moso bambo mixed forests | 0~10 | 4.75±0.11 | 23.38±4.46 | 1.73±0.23a | 13.45±1.29 | 94.68±24.30B | 6.98±1.17AB | 141.67±27.01A |
10~20 | 4.81±0.03 | 21.00±1.78 | 1.49±0.05Aab | 14.11±0.77 | 87.20±11.05 | 6.17±0.45AB | 120.67±10.69A | |
20~40 | 4.81±0.08 | 17.92±1.98AB | 1.30±0.10Ab | 13.78±0.95B | 75.76±10.27B | 5.48±0.37 | 102.67±4.16A | |
均值 Mean | 4.80±0.05 | 20.06±2.36 | 1.46±0.07A | 13.75±0.97 | 83.45±13.99B | 6.04±0.57AB | 116.92±10.21A |
Table 3
Soil total phosphorus content, available phosphorus content, and phosphorus activation coefficient of 0−40 cm soil layer in four stand types (n=36)"
林分类型 Stand type | 全磷含量 Total phosphorus content/(g·kg?1) | 有效磷含量 Available phosphorus content/(mg·kg?1) | 磷素活化系数 Phosphorus activation coefficient (%) |
杉木纯林 Chinese fir pure forest | 0.17±0.01b | 0.73±0.20b | 0.42±0.10 |
马尾松纯林 Masson pine pure forest | 0.19±0.04ab | 1.09±0.36ab | 0.62±0.33 |
杉木马尾松混交林 Chinese fir-masson pine mixed forests | 0.14±0.01b | 0.89±0.10b | 0.62±0.12 |
杉木毛竹混交林 Chinese fir-moso bamboo mixed forests | 0.24±0.01a | 1.72±0.43a | 0.72±0.21 |
均值 Mean | 0.19 | 1.11 | 0.59 |
标准差 Standard deviation | 0.04 | 0.47 | 0.21 |
变异系数 Coefficient of variation (%) | 21.05 | 42.34 | 35.59 |
Table 4
Characteristics of soil inorganic phosphorus fractions in 0−40 cm soil layer of four stand types (n=36)"
林分类型 Stand type | 可溶性磷含量 Soluble phosphorus content/(mg·kg?1) | 闭蓄态磷酸盐含量 Occluded phosphate content/(mg·kg?1) | 磷酸铝盐含量 Aluminum phosphate content/(mg·kg?1) | 磷酸铁盐含量 Iron phosphate content/(mg·kg?1) | 磷酸钙盐含量 Calcium phosphate content/(mg·kg?1) |
杉木纯林 Chinese fir pure forest | 0.50±0.10ab | 113.55±3.30ab | 5.26±1.61b | 23.23±4.33b | 2.93±0.57b |
马尾松纯林 Masson pine pure forest | 0.45±0.08b | 111.61±27.07ab | 9.67±3.15ab | 29.57±6.71b | 4.06±0.92ab |
杉木马尾松混交林 Chinese fir-masson pine mixed forests | 0.60±0.11ab | 81.59±11.28b | 7.16±0.91b | 25.63±0.63b | 3.50±0.05b |
杉木毛竹混交林 Chinese fir-moso bamboo mixed forests | 0.73±0.07a | 132.00±3.21a | 15.34±2.66a | 48.57±0.40a | 5.68±0.66a |
均值 Mean | 0.57 | 109.69 | 9.36 | 31.75 | 4.04 |
标准差 Standard deviation | 0.13 | 22.72 | 4.40 | 10.96 | 1.20 |
变异系数Coefficient of variation (%) | 22.81 | 20.71 | 47.01 | 34.52 | 29.70 |
Fig.2
Contents of soil inorganic phosphorus fractions in different soil layer of four stand types(n=9) Different capital letters indicate significant differences between the same soil layer in different stand types, and different lowercase letters indicate significant differences between different soil layers in the same stand types. The absence of letters indicates that the differences are not significant."
Table 5
Standardized major axis analysis of soil available phosphorus and inorganic phosphorus fractions (n=36)"
土壤有效磷含量与无机磷组分 Available phosphorus content and inorganic phosphorus fractions (lgy-lgx) | R2 | 异速增长指数 (95%置信区间) Allometric growth exponent (95% confidence interval) | 截距 (95%置信区间) Intercept (95% confidence interval) |
有效磷含量-磷酸铝盐含量 Available phosphorus content- aluminum phosphate content | 0.88*** | 0.79(0.69, 0.89) | ?0.71(?0.81, ?0.61) |
有效磷含量-磷酸铁盐含量 Available phosphorus content- iron phosphate content | 0.55*** | 1.92(1.43, 2.74) | ?2.85(?3.76, 1.95) |
有效磷含量-磷酸钙盐含量 Available phosphorus content- calcium phosphate content | 0.58*** | 1.88(1.42, 2.61) | ?1.12(?1.46, 0.78) |
有效磷含量-可溶性磷含量 Available phosphorus content- soluble phosphorus content | 0.25** | 2.71(1.61, 6.61) | 0.72(0.28, 1.16) |
Fig.5
Partial least squares structural equation model for regulating soil available phosphorus content across four stand types The red and blue arrows represent positive and negative regulation respectively, the values on the arrows represent standardized path coefficients, and the solid and dashed lines represent significant and non-significant respectively. The thickness of the arrows connecting the latent variables is proportional to the standardized path coefficients. The values near the arrows connecting the latent variables and the measured variables represent factor loadings. GoF represents goodness of fit."
鲍士旦. 2000. 土壤农化分析. 3版. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil and agricultural chemistry analysis. 3rd ed. Beijing: China Agriculture Press. [in Chinese] | |
曹 娟, 闫文德, 项文化, 等. 湖南会同不同年龄杉木人工林土壤磷素特征. 生态学报, 2014, 34 (22): 6519- 6527. | |
Cao J, Yan W D, Xiang W H, et al. Characteristics of soil phosphorus in different aged stands of Chinese fir plantations in Huitong, Hunan Province. Acta Ecologica Sinica, 2014, 34 (22): 6519- 6527. | |
陈嘉琪, 赵光宇, 李仰龙, 等. 杉木人工林土壤磷素形态及含量的林龄变化. 林业科学, 2022, 58 (5): 10- 17.
doi: 10.11707/j.1001-7488.20220502 |
|
Chen J Q, Zhao G Y, Li Y L, et al. Age changes of soil phosphorus form and content in Chinese fir plantations. Scientia Silvae Sinicae, 2022, 58 (5): 10- 17.
doi: 10.11707/j.1001-7488.20220502 |
|
陈立新, 杨承冻. 落叶松人工林土壤磷素形态、磷酸酶活性演变与林木生长关系的研究. 林业科学, 2004, 40 (3): 12- 18.
doi: 10.3321/j.issn:1001-7488.2004.03.002 |
|
Chen L X, Yang C D. The succession of various types of phosphorus, phosphatase activity, and the relationship with the tree growth in larch plantations. Scientia Silvae Sinicae, 2004, 40 (3): 12- 18.
doi: 10.3321/j.issn:1001-7488.2004.03.002 |
|
陈美领, 陈 浩, 毛庆功, 等. 氮沉降对森林土壤磷循环的影响. 生态学报, 2016, 2016,36 (16): 4965- 4976. | |
Chen M L, Chen H, Mao Q G, et al. Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: a review. Acta Ecologica Sinica, 2016, 2016,36 (16): 4965- 4976. | |
程瑞梅, 王 娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展. 林业科学, 2018, 54 (7): 130- 136.
doi: 10.11707/j.1001-7488.20180714 |
|
Cheng R M, Wang N, Xiao W F, et al. Advances in studies of ecological stoichiometry of terrestrial ecosystems. Scientia Silvae Sinicae, 2018, 54 (7): 130- 136.
doi: 10.11707/j.1001-7488.20180714 |
|
全国土壤普查办公室. 1992. 中国土壤普查技术. 北京: 农业出版社. | |
China Soil Survey Office. 1992. Soil census techniques in China. Beijing: Agricultural Press. [in Chinese] | |
樊纲惟, 项文化, 雷丕峰, 等. 亚热带常绿阔叶林土壤磷素空间分布特征及其影响因素. 农业现代化研究, 2014, 35 (3): 367- 370. | |
Fan G W, Xiang W H, Lei P F, et al. Spatial distribution and driving factors of soil phosphorus in a subtropical evergreen broadleaf forest. Research of Agricultural Modernization, 2014, 35 (3): 367- 370. | |
冯婵莹, 郑成洋, 田 地. 氮添加对森林植物磷含量的影响及其机制. 植物生态学报, 2019, 43 (3): 185- 196.
doi: 10.17521/cjpe.2018.0240 |
|
Fen C Y, Zheng C Y, Tian D. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms. Chinese Journal of Plant Ecology, 2019, 43 (3): 185- 196.
doi: 10.17521/cjpe.2018.0240 |
|
何 敏, 许秋月, 夏 允, 等. 植物磷获取机制及其对全球变化的响应. 植物生态学报, 2023, 47 (3): 291- 305.
doi: 10.17521/cjpe.2021.0451 |
|
He M, Xu Q Y, Xia Y, et al. Plant phosphorus acquisition mechanisms and their response to global climate changes. Chinese Journal of Plant Ecology, 2023, 47 (3): 291- 305.
doi: 10.17521/cjpe.2021.0451 |
|
黄志宏, 田大伦, 周光益,等. 广东南岭不同林分类型土壤养分状况比较分析. 东北林业大学学报, 2009, 37 (9): 63- 67.
doi: 10.3969/j.issn.1000-5382.2009.09.023 |
|
Huang Z H, Tian D L, Zhou G Y, et al. Soil nutrient status of different forest types in Nanling mountains, northern Guangdong Province. Journal of Northeast Forestry University, 2009, 37 (9): 63- 67.
doi: 10.3969/j.issn.1000-5382.2009.09.023 |
|
简尊吉, 倪妍妍, 徐 瑾, 等. 中国马尾松林土壤肥力特征. 生态学报, 2021, 41 (13): 5279- 5288. | |
Jian Z J, Ni Y Y, Xu J, et al. Soil fertility in the Pinus massoniana forests of China. Acta Ecologica Sinica, 2021, 41 (13): 5279- 5288. | |
蒋 芬, 黄 娟, 褚国伟, 等. 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献. 植物生态学报, 2021, 45 (2): 197- 206.
doi: 10.17521/cjpe.2020.0263 |
|
Jiang F, Huang J, Chu G W, et al. Effects of warming on soil phosphorus fractions and their contributions to available phosphorus in south subtropical forests. Chinese Journal of Plant Ecology, 2021, 45 (2): 197- 206.
doi: 10.17521/cjpe.2020.0263 |
|
李学敏, 张劲苗. 河北潮土磷素状态的研究. 土壤通报, 1994, 25 (6): 259- 260. | |
Li X M, Zhang J M. Distribution of soil phosphorus in Hebei Province. Chinese Journal of Soil Science, 1994, 25 (6): 259- 260. | |
刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34 (1): 64- 71.
doi: 10.3773/j.issn.1005-264x.2010.01.010 |
|
Liu X Z, Zhou G Y, Zhang D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 2010, 34 (1): 64- 71.
doi: 10.3773/j.issn.1005-264x.2010.01.010 |
|
王亚茹, 林鑫宇, 惠 昊, 等. 杨树人工林类型对土壤磷组分的影响. 生态学杂志, 2021, 40 (6): 1549- 1556. | |
Wang Y R, Lin X Y, Hui H, et al. Effects of polar plantation types on soil phosphorus fractions. Chinese Journal of Ecology, 2021, 40 (6): 1549- 1556. | |
吴 慧, 田书荣, 廖德志, 等. 竹林扩张进入杉木人工林对土壤磷素的影响. 中南林业科技大学学报, 2023, 43 (5): 66- 72. | |
Wu H, Tian S R, Liao D Z, et al. Effects of bamboo forest expansion on soil phosphorus in Cunninghamia lanceolata plantation. Journal of Central South University of Forestry & Technology, 2023, 43 (5): 66- 72. | |
许窕孜, 叶彩红, 张 耕, 等. 北江中下游不同林分类型土壤C、N、P生态化学计量特征. 应用生态学报, 2023, 34 (4): 962- 968. | |
Xu T Z, Ye C H, Zhang G, et al. Soil C, N and P stoichiometry in different forest stand types in the middle and lower reaches of Beijiang River, China. Chinese Journal of Applied Ecology, 2023, 34 (4): 962- 968. | |
张 虹, 于姣妲, 李海洋, 等. 不同栽植代数杉木人工林土壤磷素特征研究. 林业科学研究, 2021, 34 (1): 10- 18. | |
Zhang H, Yu J D, Li H Y, et al. Characteristics of soil phosphorus in Cunninghamia lanceolata plantations with different planting rotations. Forest Research, 2021, 34 (1): 10- 18. | |
张英鹏, 陈 清, 李 彦, 等. 2008. 不同磷水平对山东褐土耕层无机磷形态及磷有效性的影响. 中国农学通报, 24(7): 245−248. | |
Zhang Y P, Chen Q, Li Y, et al. 2011. Effect of phosphorus levels on fore and bioavailability of inorganic P in plough layer of cinnamon soil in Shandong Province. Chinese Agricultural Science Bulletin, 24(7): 245−248. [in Chinese] | |
Augusto L, Ranger J, Binkley D, et al. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 2002, 59 (3): 233- 253.
doi: 10.1051/forest:2002020 |
|
Bowman W D, Cleveland C C, Halada L, et al. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 2008, 1 (11): 767- 770.
doi: 10.1038/ngeo339 |
|
Chadwick O A, Chorover J. The chemistry of pedogenic thresholds. Geoderma, 2001, 100 (3/4): 321- 353.
doi: 10.1016/S0016-7061(01)00027-1 |
|
Chang S C, Jackson M L. Solubility product of iron phosphate. Soil Science Society of America Journal, 1957, 21 (3): 265- 269.
doi: 10.2136/sssaj1957.03615995002100030005x |
|
Chen H J. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecology and Management, 2003, 178 (3): 301- 310.
doi: 10.1016/S0378-1127(02)00478-4 |
|
Cui E Q, Lu R L, Xu X N, et al. Soil phosphorus drives plant trait variations in a mature subtropical forest. Global Change Biology, 2022, 28 (10): 3310- 3320.
doi: 10.1111/gcb.16148 |
|
Fan Y X, Zhong X J, Lin F, et al. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 2019, 337, 246- 255.
doi: 10.1016/j.geoderma.2018.09.028 |
|
Haghverdi K, Kooch Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. Catena, 2019, 178, 335- 344.
doi: 10.1016/j.catena.2019.03.041 |
|
Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 2001, 237 (2): 173- 195.
doi: 10.1023/A:1013351617532 |
|
Hou E Q, Luo Y Q, Kuang Y W, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11 (1): 637.
doi: 10.1038/s41467-020-14492-w |
|
Jia T, Fang X M, Yuan Y, et al. Phosphorus addition alter the pine resin flow rate by regulating tree growth and non-structural carbohydrates in a subtropical slash pine plantation. Industrial Crops and Products, 2023, 199, 116782.
doi: 10.1016/j.indcrop.2023.116782 |
|
Jiang B S, Shen J L, Sun M H, et al. Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere, 2021, 31 (1): 103- 115.
doi: 10.1016/S1002-0160(20)60053-4 |
|
Li J B, Xie T, Zhu H, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404, 115376.
doi: 10.1016/j.geoderma.2021.115376 |
|
Liu Y, Zhang G H, Luo X Z, et al. Mycorrhizal fungi and phosphatase involvement in rhizosphere phosphorus transformations improves plant nutrition during subtropical forest succession. Soil Biology and Biochemistry, 2021, 153, 108099.
doi: 10.1016/j.soilbio.2020.108099 |
|
Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (30): 11001- 11006. | |
Richardson A E, Lynch J P, Ryan P R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349 (1): 121- 156. | |
Rothe A, Binkley D. Nutritional interactions in mixed species forests: a synthesis. Canadian Journal of Forest Research, 2001, 31 (11): 1855- 1870.
doi: 10.1139/x01-120 |
|
Santín C, Otero X L, Doerr S H, et al. Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Science of the Total Environment, 2018, 621, 1103- 1114.
doi: 10.1016/j.scitotenv.2017.10.116 |
|
Schmidt M, Veldkamp E, Corre M D. Tree species diversity effects on productivity, soil nutrient availability and nutrient response efficiency in a temperate deciduous forest. Forest Ecology and Management, 2015, 338, 114- 123.
doi: 10.1016/j.foreco.2014.11.021 |
|
Tian D S, Niu S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10 (2): 024019.
doi: 10.1088/1748-9326/10/2/024019 |
|
Wu C S, Mo Q F, Wang H K, et al. Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) invasion affects soil phosphorus dynamics in adjacent coniferous forests in subtropical China. Annals of Forest Science, 2018, 75 (1): 1- 11.
doi: 10.1007/s13595-017-0678-2 |
|
Yang L M, Yang Z J, Zhong X J, et al. Decreases in soil P availability are associated with soil organic P declines following forest conversion in subtropical China. Catena, 2021, 205, 105459.
doi: 10.1016/j.catena.2021.105459 |
|
Zhang D H, Ye Z F, Luo S F. The preliminary study on P adsorption and P desorption in Fujian mountain red soils. Journal of Mountain Science, 2001, 19 (1): 19- 23. | |
Zhang N Y, Qiong W, Zhan X Y, et al. 2022a. Characteristics of inorganic phosphorus fractions and their correlations with soil properties in three non-acidic soils. Journal of Integrative Agriculture, 21(12): 3626-3636. | |
Zhang P P, Yin M Z, Zhang X J, et al. 2022b. Differential aboveground-belowground adaptive strategies to alleviate N addition-induced P deficiency in two alpine coniferous forests. Science of the Total Environment, 849: 157906. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||