Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (11): 25-36.doi: 10.11707/j.1001-7488.LYKX20240004
Previous Articles Next Articles
Xiangrong Liu1,2(),Qiwu Sun1,2,Lingyu Hou1,2,Zhongyi Pang3,Yanlin Zhang1,2,Changjun Ding1,2,*
Received:
2024-01-02
Online:
2024-11-25
Published:
2024-11-30
Contact:
Changjun Ding
E-mail:lxr20210822@163.com
CLC Number:
Xiangrong Liu,Qiwu Sun,Lingyu Hou,Zhongyi Pang,Yanlin Zhang,Changjun Ding. The Differences in Soil Microbial Community Structure and Functional Diversity among Poplar Plantations at Different Ages in the Songliao Plain[J]. Scientia Silvae Sinicae, 2024, 60(11): 25-36.
Table 1
Basic situation of experimental forests"
林龄 Age/a | 海拔 Altitude/m | 树高 Tree height/m | 胸径 DBH/cm | 株行距 Plant-row spacing/ m×m | 郁闭度 Canopy density |
2 | 32 | 5.1±0.38 | 6.2±0.15 | 2×6 | 0.6±0.02 |
4 | 45 | 7.1±0.06 | 12.7±0.17 | 2×6 | 0.6±0.02 |
7 | 37 | 12.0±0.06 | 21.5±0.42 | 1~4 a:2×6 5~7 a:4×6 | 0.7±0.02 |
10 | 41 | 20.1±0.15 | 25.0±0.93 | 1~4 a:2×6 5~10 a:4×6 | 0.7±0.02 |
14 | 37 | 22.0±0.15 | 30.7±0.49 | 1~4 a:2×6 5~14 a:4×6 | 0.8±0.01 |
Table 2
Soil bacterial communities in poplar plantations of different stand ages identified from the FAPROTAX database"
林龄 Stand age/a | 氮转化细菌群 Nitrogen-transformation bacteriome | 碳转化细菌群 Carbon-transformation bacteriome | ||||
固氮作用 Nitrogen fixation | 硝酸盐还原作用 Nitrate reduction | 光养作用 Phototrophy | 光自养作用 Photoautotrophy | 含氧光自养作用 Oxygenic photoautotrophy | ||
2 | 2.24±0.19d | 2.42±0.61a | 0.79±0.17a | 0.68±0.21a | 0.50±0.13ab | |
4 | 2.92±0.33bc | 2.33±0.73a | 0.79±0.24a | 0.70±0.19a | 0.53±0.22ab | |
7 | 2.51±0.32cd | 2.30±0.25a | 1.05±0.47a | 0.99±0.44a | 0.86±0.38a | |
10 | 3.04±0.04b | 2.28±0.51a | 0.58±0.17a | 0.43±0.16a | 0.25±0.13b | |
14 | 4.35±0.19a | 1.05±0.45b | 1.19±0.38a | 1.03±0.45a | 0.95±0.41a |
Table 3
Soil fungi communities in poplar plantations of different stand ages identified from the FUNGuild database"
林龄 Stand age/a | 腐生营养型 Saprotroph | 病理营养型 Pathotroph | |||
未定义的腐生菌 Undefined saprotroph | 排泄物腐生菌 Dung saprotroph | 植物病原菌 Plant pathogen | 真菌寄生菌 Fungal parasite | ||
2 | 47.51±2.91a | 6.15±1.13a | 16.79±1.92ab | 3.92±0.22a | |
4 | 48.35±4.64a | 4.88±1.41a | 21.35±7.12a | 3.24±0.19a | |
7 | 48.49±1.77a | 6.01±0.51a | 15.58±0.96ab | 3.32±0.68a | |
10 | 36.46±12.27a | 5.13±2.65a | 12.21±2.78b | 12.26±10.67a | |
14 | 43.84±3.36a | 5.40±1.22a | 19.40±3.94ab | 5.18±0.76a |
安 然, 龚吉蕊, 尤 鑫, 等. 不同龄级速生杨人工林土壤微生物数量与养分动态变化. 植物生态学报, 2011, 35 (4): 389- 401.
doi: 10.3724/SP.J.1258.2011.00389 |
|
An R, Gong J R, You X, et al. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China. Chinese Journal of Plant Ecology, 2011, 35 (4): 389- 401.
doi: 10.3724/SP.J.1258.2011.00389 |
|
曹 娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征. 林业科学, 2015, 51 (7): 1- 8. | |
Cao J, Yan W D, Xiang W H, et al. Stoichiometry characterization of soil C, N, and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China. Scientia Silvae Sinicae, 2015, 51 (7): 1- 8. | |
陈彦云, 夏皖豫, 赵 辉, 等. 粉垄耕作对耕地土壤酶活性、微生物群落结构和功能多样性的影响. 生态学报, 2022, 42 (12): 5009- 5021. | |
Chen Y Y, Xia W Y, Zhao H, et al. Effects of deep vertical rotary tillage on soil enzyme activity, microbial community structure and functional diversity of cultivated land. Acta Ecologica Sinca, 2022, 42 (12): 5009- 5021. | |
丛 微, 于晶晶, 喻海茫, 等. 不同气候带森林土壤微生物多样性和群落构建特征. 林业科学, 2022, 58 (2): 70- 79. | |
Cong W, Yu J J, Yu H M, et al. Diversity and community assembly of forest soil microorganisms in different climatic zones. Scientia Silvae Sinicae, 2022, 58 (2): 70- 79. | |
高永健, 袁玉欣, 刘四维, 等. 不同林龄杨树人工林对土壤微生物状况和酶活性的影响. 中国农学通报, 2007, 23 (7): 185- 189. | |
Gao Y J, Yuan Y X, Liu S W, et al. The effects of different stand ages on microbe populations and enzyme activities. Chinese Agricultural Science Bulletin, 2007, 23 (7): 185- 189. | |
刘可意, 杨 佳, 姜淑娜, 等. 基于最小数据集的典型黑土区不同林龄小黑杨土壤质量差异. 生态学报, 2024, 44 (9): 3623- 3635. | |
Liu K Y, Yang J, Jiang S N, et al. Evaluation of differences in soil quality of Populus simonii × P. nigra (P. xiaohei) of different stand ages in typical black soil areas based on a minimum data set. Acta Ecologica Sinca, 2024, 44 (9): 3623- 3635. | |
刘 丽, 段争虎, 汪思龙, 等. 不同发育阶段杉木人工林对土壤微生物群落结构的影响. 生态学杂志, 2009, (12): 2417- 2423. | |
Liu L, Duan Z H, Wang S L, et al. Effects of Cunninghamia lanceolata plantations at different developmental stages on soil microbial community structure. Chinese Journal of Ecology, 2009, (12): 2417- 2423. | |
孙 艳, 王益权, 刘 军, 等. 日光温室蔬菜栽培对土壤物理质量的影响. 应用生态学报, 2011, 22 (8): 2054- 2060. | |
Sun Y, Wang Y Q, Liu J, et al. Effects of solar greenhouse vegetable cultivation on soil physical quality. Chinese Journal of Applied Ecology, 2011, 22 (8): 2054- 2060. | |
孙宇璇, 曾 涛, 陈双丹, 等. 彭州市不同土地利用方式下土壤小型分解者群落的结构和功能. 生态学报, 2024, 44 (13): 5567- 5582. | |
Sun Y X, Zeng T, Chen S D, et al. The community structure and function of soil micro-decomposers under different land use types in Pengzhou City. Acta Ecologica Sinica, 2024, 44 (13): 5567- 5582. | |
王宏星, 孙晓梅, 陈东升, 等. 适度间伐对日本落叶松人工林生物多样性和土壤多功能性影响. 林业科学, 2023, 59 (6): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220508 |
|
Wang H X, Sun X M, Chen D S, et al. Effects of moderate thinning on biological diversity and soil multifunctionality in Larix kaempferi plantations. Scientia Silvae Sinicae, 2023, 59 (6): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220508 |
|
王树力, 孙 悦, 沈海燕, 等. 不同密度杂种落叶松人工林的土壤微生物变化特征. 中国水土保持科学, 2009, 7 (3): 59- 66.
doi: 10.3969/j.issn.1672-3007.2009.03.011 |
|
Wang S L, Sun Y, Shen H Y, et al. Changes of soil microbiological properties of Larix olgensis + Larix kaempferi plantation with the different densities. Science of Soil and Water Conservation, 2009, 7 (3): 59- 66.
doi: 10.3969/j.issn.1672-3007.2009.03.011 |
|
姚 拓, 龙瑞军, 王 刚, 等. 兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究. 土壤学报, 2004, 41 (3): 444- 448.
doi: 10.3321/j.issn:0564-3929.2004.03.018 |
|
Yao T, Long R J, Wang G, et al. Isolation and characteristics of associative symbiotic nitrogen bacteria from rhizosphere of wheat in saline soil in Lanzhou area. Acta Pedologica Sinica, 2004, 41 (3): 444- 448.
doi: 10.3321/j.issn:0564-3929.2004.03.018 |
|
张 瑛, 马雪松, 敬如岩, 等. 基于宏基因组测序技术分析连作对杨树人工林土壤微生物群落的影响. 山东大学学报(理学版), 2019, 54 (1): 36- 46. | |
Zhang Y, Ma X S, Jing R Y, et al. Effects of successive-planting poplar plantation on soil microbial community. Journal of Shandong University (Natural Science), 2019, 54 (1): 36- 46. | |
张雅茜, 方 晰, 冼应男, 等. 亚热带区4种林地土壤微生物生物量碳氮磷及酶活性特征. 生态学报, 2019, 39 (14): 5326- 5338. | |
Zhang Y Q, Fang X, Xian Y N, et al. Characteristics of soil microbial biomass carbon, nitrogen, phosphorus and enzyme activity in four subtropical forests, China. Acta Ecologica Sinica, 2019, 39 (14): 5326- 5338. | |
赵伟红, 康峰峰, 韩海荣, 等. 冀北辽河源地区不同林龄山杨天然次生林土壤理化特征的研究. 中南林业科技大学学报, 2016, 36 (1): 52- 57. | |
Zhao W H, Kang F F, Han H R, et al. Study on soil physical and chemical properties of Populus davidiana natural secondary forests with various tree-ages in Liaoheyuan Natural Reserve of northern Hebei Province. Journal of Central South University of Forestry and Technology, 2016, 36 (1): 52- 57. | |
Bahram M, Hildebrand F, Forslund S K, et al. Structure and function of the global topsoil microbiome. Nature, 2018, 560, 233- 237.
doi: 10.1038/s41586-018-0386-6 |
|
Barka E A, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 2016, 80 (1): 1- 43.
doi: 10.1128/MMBR.00019-15 |
|
Brown S P, Jumpponen A. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Molecular Ecology, 2014, 23 (2): 481- 497.
doi: 10.1111/mec.12487 |
|
Cairney J W G. Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycological Research, 2005, 109 (1): 7- 20.
doi: 10.1017/S0953756204001753 |
|
Chen F L, Zheng H, Zhang K, et al. Changes in soil microbial community structure and metabolic activity following conversion from native Pinus massoniana plantations to exotic Eucalyptus plantations. Forest Ecology and Management, 2013, 291, 65- 72.
doi: 10.1016/j.foreco.2012.11.016 |
|
Chen L F, He Z B, Wu X R, et al. Linkages between soil respiration and microbial communities following afforestation of alpine grasslands in the northeastern Tibetan Plateau. Applied Soil Ecology, 2021, 161, 103882.
doi: 10.1016/j.apsoil.2021.103882 |
|
Dang P, Yu X, Le H, et al. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS One, 2017, 12 (10): e0186501.
doi: 10.1371/journal.pone.0186501 |
|
Delgado-Baquerizo M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil. Science, 2018, 359 (6373): 320- 325.
doi: 10.1126/science.aap9516 |
|
Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (3): 626- 631. | |
Gibbons S M. Microbial community ecology: function over phylogeny. Nature Ecology & Evolution, 2017, 1 (1): 32. | |
Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry, 2002, 34 (9): 1299- 1307.
doi: 10.1016/S0038-0717(02)00073-1 |
|
Jat H S, Choudhary M, Datta A, et al. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil and Tillage Research, 2020, 199, 104595.
doi: 10.1016/j.still.2020.104595 |
|
Paungfoo-Lonhienne C, Yeoh Y K, Kasinadhuni N R P, et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 2015, 5, 8678.
doi: 10.1038/srep08678 |
|
Peco B, Navarro E, Carmona C P, et al. 2017. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agriculture, Ecosystems & Environment, 249: 215–225. | |
Rezapour S. Response of some soil attributes to different land use types in calcareous soils with Mediterranean type climate in north-west of Iran. Environmental Earth Sciences, 2014, 71 (5): 2199- 2210.
doi: 10.1007/s12665-013-2625-3 |
|
Rodríguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 2006, 287 (1): 15- 21. | |
Rodríguez-Soalleiro R, Eimil-Fraga C, Gómez-García E, et al. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. Forest Ecosystems, 2018, 5, 35.
doi: 10.1186/s40663-018-0154-y |
|
Romaniuk R, Giuffré L, Costantini A, et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecological Indicators, 2011, 11 (5): 1345- 1353.
doi: 10.1016/j.ecolind.2011.02.008 |
|
Shi X Z, Wang J Q, Lucas-Borja M E, et al. Microbial diversity regulates ecosystem multifunctionality during natural secondary succession. Journal of Applied Ecology, 2021, 58 (12): 2833- 2842.
doi: 10.1111/1365-2664.14015 |
|
Springob G, Kirchmann H. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biology and Biochemistry, 2003, 35 (4): 629- 632.
doi: 10.1016/S0038-0717(03)00052-X |
|
Tedersoo L, Bahram M, Põlme S, et al. Fungal biogeography. Global diversity and geography of soil fungi. Science, 2014, 346 (6213): 1256688.
doi: 10.1126/science.1256688 |
|
Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 2010, 98 (1): 139- 151. | |
van der Putten W H, Bardgett R D, Bever J D, et al. Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101 (2): 265- 276.
doi: 10.1111/1365-2745.12054 |
|
Větrovský T, Steffen K T, Baldrian P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One, 2014, 9 (2): e89108.
doi: 10.1371/journal.pone.0089108 |
|
Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 2014, 111 (14): 5266- 5270.
doi: 10.1073/pnas.1320054111 |
|
Wang C Q, Xue L, Dong Y H, et al. Effects of stand density on soil microbial community composition and enzyme activities in subtropical Cunninghamia lanceolate (Lamb. ) Hook plantations. Forest Ecology and Management, 2021, 479, 118559.
doi: 10.1016/j.foreco.2020.118559 |
|
Wang S, Adhikari K, Wang Q B, et al. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C: N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 2018, 84, 263- 272.
doi: 10.1016/j.ecolind.2017.08.046 |
|
Wu N, Li Z, Meng S, et al. Soil properties and microbial community in the rhizosphere of Populus alba var. pyramidalis along a chronosequence. Microbiological Research, 2021, 250, 126812.
doi: 10.1016/j.micres.2021.126812 |
|
Wu Z X, Hao Z P, Sun Y Q, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Applied Soil Ecology, 2016, 107, 99- 107.
doi: 10.1016/j.apsoil.2016.05.017 |
|
Yang Q, Lei A P, Li F L, et al. Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay, China. Marine Pollution Bulletin, 2014, 85 (2): 754- 763.
doi: 10.1016/j.marpolbul.2014.02.024 |
|
Zhang Y Q, Ai J J, Sun Q W, et al. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. CATENA, 2021, 196, 104872.
doi: 10.1016/j.catena.2020.104872 |
[1] | Jing Xie,Feng Zhang,Zeyuan Zhou,Haiqun Yu,Yi Han,Chunxin Yang,Wei Jiang,Jinzu Liu,Boen Liu,He Liu. Seasonal Variations in Water Use Efficiency of Plantation Ecosystem in an Urban Park of Beijing [J]. Scientia Silvae Sinicae, 2024, 60(9): 12-17. |
[2] | Wankuan Zhu,Zhichao Wang,Apeng Du,Yuxing Xu. Seasonal Patterns of Carbon and Water Fluxes and Their Environmental Biological Control in the Eucalyptus Plantation in Zhanjiang of Guangdong Province [J]. Scientia Silvae Sinicae, 2024, 60(9): 18-32. |
[3] | Shuya Yang,Jingru Wang,Yingying Zhu,Lita Yi,Meihua Liu. Effects of Mixed Plantation of Cunninghamia lanceolata and Phoebe chekiangensis on Root Exudates and Community Structure of Arbuscular Mycorrhizal Fungi [J]. Scientia Silvae Sinicae, 2024, 60(9): 59-68. |
[4] | Dongcai Huang,Xin Guo,Dexiang Wang,Yunshu Wang,Xin Zhang,Xueying Huo. Effects of Different Management Methods on Stand Growth and Understory Vegetation of Larix principis-rupprechtii in Qinling Mountains [J]. Scientia Silvae Sinicae, 2024, 60(8): 57-66. |
[5] | Runlu Yang,Juan Wang,Chunyu Zhang. Response of Carbon Storage to Logging Disturbance in Canopy Layer of Natural Secondary Coniferous-Broadleaved Mixed Forest in Northeast China [J]. Scientia Silvae Sinicae, 2024, 60(7): 17-27. |
[6] | Yadong Xue,Ge Sun,Jia Li, Delgerchimeg Dawaasuren, Amgalan Luvsamjamba,Guangliang Li,Aili Qin,Kun Jin,Wenfa Xiao. Diversities and Distribution Patterns of Gobi Bear and Its Sympatric Species in Great Gobi A Strictly Protected Area in Mongolia [J]. Scientia Silvae Sinicae, 2024, 60(7): 95-104. |
[7] | Lin Zhu,Lishui Nie,Ce Shi,Mengyao Huang,Xin Niu,Runzhe Zhang,Zhaode Zhang,Yifan Wei,Dengzhi Wang,Hao Yang,Haoliang Nie,Jiang Wang,HuiJuan Bo. Effects of Soil Properties and Stand Factors on nirK-Denitrifying Microbial Community in Songshan, Beijing [J]. Scientia Silvae Sinicae, 2024, 60(5): 139-150. |
[8] | Xinsheng Han,Hao Xu,Jinjun Cai,Liguo Dong,Yongzhong Guo,Yueling Wang,Haixia Wan,Yu An. Soil Moisture Dynamics and the Influencing Factors in the Sparse Strip-Planted Prunus sibirica Plantation in the Loess Region of Ningxia [J]. Scientia Silvae Sinicae, 2024, 60(4): 79-90. |
[9] | Huan Xiao, Baiketuerhan Yeerjiang,Chunyu Zhang,Xiuhai Zhao. Relationship between Forest Layer Community Structure and Productivity of Broad-Leaved Korean Pine Forest in Changbai Mountain [J]. Scientia Silvae Sinicae, 2024, 60(3): 57-64. |
[10] | Dan Kong,Yong Pang,Xiaojun Liang,Liming Du,Yu Bai. Individual Tree Segmentation from ALS Point Clouds Based on Layers Stacking Algorithm [J]. Scientia Silvae Sinicae, 2024, 60(3): 87-99. |
[11] | Lei Xu,Xiaoyun Wu,Jiang Lü,Yun Shi,Mengxun Zhu,Hang Xu,Zhiqiang Zhang. Impacts of Diffuse Radiation Fraction on Energy Partitioning in a Poplar Plantation in the North China Plain [J]. Scientia Silvae Sinicae, 2024, 60(3): 100-110. |
[12] | Lü Ziqing, Duan Aiguo. Biomass and Carbon Storage Model of Cunninghamia lanceolata in Different Production Areas [J]. Scientia Silvae Sinicae, 2024, 60(2): 1-11. |
[13] | Xinsheng Han,Yanhui Wang,Pengtao Yu,Zhenhua Li,Yipeng Yu,Xiao Wang. Construction of Multi-Factor Response Coupling Models of Tree Height and DBH Growth of Larix principis-rupprechtii Plantations in Northern Liupan Mountains, Ningxia [J]. Scientia Silvae Sinicae, 2024, 60(11): 13-24. |
[14] | Fang Zhou,Keyi Jiang,Lanhua Ye,Qinghua Shen,Ran Tong,Nianfu Zhu,Yongzhao Miao,Tonggui Wu. Soil Phosphorus Availability and Its Influencing Factors of the Plantations in Baishanzu National Park [J]. Scientia Silvae Sinicae, 2024, 60(11): 37-47. |
[15] | Dou Yang,Chaohua Liu,Fengqiao Li,Luozhong Tang,Ye Tian,Shengzuo Fang,Xiaogang Li. Soil Aggregates and Carbon Sequestration Differences between Two Densities of Poplar Plantation Forests in the North Jiangsu Plain Area [J]. Scientia Silvae Sinicae, 2024, 60(10): 21-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||